rc_crypto/
agreement.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// This file contains code that was copied from the ring crate which is under
// the ISC license, reproduced below:

// Copyright 2015-2017 Brian Smith.

// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.

// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use crate::error::*;
use core::marker::PhantomData;

pub use ec::{Curve, EcKey};
use nss::{ec, ecdh};

pub type EphemeralKeyPair = KeyPair<Ephemeral>;

/// A key agreement algorithm.
#[derive(PartialEq, Eq)]
pub struct Algorithm {
    pub(crate) curve_id: ec::Curve,
}

pub static ECDH_P256: Algorithm = Algorithm {
    curve_id: ec::Curve::P256,
};

pub static ECDH_P384: Algorithm = Algorithm {
    curve_id: ec::Curve::P384,
};

/// How many times the key may be used.
pub trait Lifetime {}

/// The key may be used at most once.
pub struct Ephemeral {}
impl Lifetime for Ephemeral {}

/// The key may be used more than once.
pub struct Static {}
impl Lifetime for Static {}

/// A key pair for key agreement.
pub struct KeyPair<U: Lifetime> {
    private_key: PrivateKey<U>,
    public_key: PublicKey,
}

impl<U: Lifetime> KeyPair<U> {
    /// Generate a new key pair for the given algorithm.
    pub fn generate(alg: &'static Algorithm) -> Result<Self> {
        let (prv_key, pub_key) = ec::generate_keypair(alg.curve_id)?;
        Ok(Self {
            private_key: PrivateKey {
                alg,
                wrapped: prv_key,
                usage: PhantomData,
            },
            public_key: PublicKey {
                alg,
                wrapped: pub_key,
            },
        })
    }

    pub fn from_private_key(private_key: PrivateKey<U>) -> Result<Self> {
        let public_key = private_key
            .compute_public_key()
            .map_err(|_| ErrorKind::InternalError)?;
        Ok(Self {
            private_key,
            public_key,
        })
    }

    /// The private key.
    pub fn private_key(&self) -> &PrivateKey<U> {
        &self.private_key
    }

    /// The public key.
    pub fn public_key(&self) -> &PublicKey {
        &self.public_key
    }

    /// Split the key pair apart.
    pub fn split(self) -> (PrivateKey<U>, PublicKey) {
        (self.private_key, self.public_key)
    }
}

impl KeyPair<Static> {
    pub fn from(private_key: PrivateKey<Static>) -> Result<Self> {
        Self::from_private_key(private_key)
    }
}

/// A public key for key agreement.
pub struct PublicKey {
    wrapped: ec::PublicKey,
    alg: &'static Algorithm,
}

impl PublicKey {
    #[inline]
    pub fn to_bytes(&self) -> Result<Vec<u8>> {
        Ok(self.wrapped.to_bytes()?)
    }

    #[inline]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.alg
    }
}

/// An unparsed public key for key agreement.
pub struct UnparsedPublicKey<'a> {
    alg: &'static Algorithm,
    bytes: &'a [u8],
}

impl<'a> UnparsedPublicKey<'a> {
    pub fn new(algorithm: &'static Algorithm, bytes: &'a [u8]) -> Self {
        Self {
            alg: algorithm,
            bytes,
        }
    }

    pub fn algorithm(&self) -> &'static Algorithm {
        self.alg
    }

    pub fn bytes(&self) -> &'a [u8] {
        self.bytes
    }
}

/// A private key for key agreement.
pub struct PrivateKey<U: Lifetime> {
    wrapped: ec::PrivateKey,
    alg: &'static Algorithm,
    usage: PhantomData<U>,
}

impl<U: Lifetime> PrivateKey<U> {
    #[inline]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.alg
    }

    pub fn compute_public_key(&self) -> Result<PublicKey> {
        let pub_key = self.wrapped.convert_to_public_key()?;
        Ok(PublicKey {
            wrapped: pub_key,
            alg: self.alg,
        })
    }

    /// Ephemeral agreement.
    /// This consumes `self`, ensuring that the private key can
    /// only be used for a single agreement operation.
    pub fn agree(self, peer_public_key: &UnparsedPublicKey<'_>) -> Result<InputKeyMaterial> {
        agree_(&self.wrapped, self.alg, peer_public_key)
    }
}

impl PrivateKey<Static> {
    /// Static agreement.
    /// This borrows `self`, allowing the private key to
    /// be used for a multiple agreement operations.
    pub fn agree_static(
        &self,
        peer_public_key: &UnparsedPublicKey<'_>,
    ) -> Result<InputKeyMaterial> {
        agree_(&self.wrapped, self.alg, peer_public_key)
    }

    pub fn import(ec_key: &EcKey) -> Result<Self> {
        // XXX: we should just let ec::PrivateKey own alg.
        let alg = match ec_key.curve() {
            Curve::P256 => &ECDH_P256,
            Curve::P384 => &ECDH_P384,
        };
        let private_key = ec::PrivateKey::import(ec_key)?;
        Ok(Self {
            wrapped: private_key,
            alg,
            usage: PhantomData,
        })
    }

    pub fn export(&self) -> Result<EcKey> {
        Ok(self.wrapped.export()?)
    }

    /// The whole point of having `Ephemeral` and `Static` lifetimes is to use the type
    /// system to avoid re-using the same ephemeral key. However for tests we might need
    /// to create a "static" ephemeral key.
    pub fn _tests_only_dangerously_convert_to_ephemeral(self) -> PrivateKey<Ephemeral> {
        PrivateKey::<Ephemeral> {
            wrapped: self.wrapped,
            alg: self.alg,
            usage: PhantomData,
        }
    }
}

fn agree_(
    my_private_key: &ec::PrivateKey,
    my_alg: &Algorithm,
    peer_public_key: &UnparsedPublicKey<'_>,
) -> Result<InputKeyMaterial> {
    let alg = &my_alg;
    if peer_public_key.algorithm() != *alg {
        return Err(ErrorKind::InternalError.into());
    }
    let pub_key = ec::PublicKey::from_bytes(my_private_key.curve(), peer_public_key.bytes())?;
    let value = ecdh::ecdh_agreement(my_private_key, &pub_key)?;
    Ok(InputKeyMaterial { value })
}

/// The result of a key agreement operation, to be fed into a KDF.
#[must_use]
pub struct InputKeyMaterial {
    value: Vec<u8>,
}

impl InputKeyMaterial {
    /// Calls `kdf` with the raw key material and then returns what `kdf`
    /// returns, consuming `Self` so that the key material can only be used
    /// once.
    pub fn derive<F, R>(self, kdf: F) -> R
    where
        F: FnOnce(&[u8]) -> R,
    {
        kdf(&self.value)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use base64::{engine::general_purpose::URL_SAFE_NO_PAD, Engine};

    // Test vectors copied from:
    // https://chromium.googlesource.com/chromium/src/+/56f1232/components/test/data/webcrypto/ecdh.json#5

    const PUB_KEY_1_B64: &str =
        "BLunVoWkR67xRdAohVblFBWn1Oosb3kH_baxw1yfIYFfthSm4LIY35vDD-5LE454eB7TShn919DVVGZ_7tWdjTE";
    const PRIV_KEY_1_JWK_D: &str = "CQ8uF_-zB1NftLO6ytwKM3Cnuol64PQw5qOuCzQJeFU";
    const PRIV_KEY_1_JWK_X: &str = "u6dWhaRHrvFF0CiFVuUUFafU6ixveQf9trHDXJ8hgV8";
    const PRIV_KEY_1_JWK_Y: &str = "thSm4LIY35vDD-5LE454eB7TShn919DVVGZ_7tWdjTE";

    const PRIV_KEY_2_JWK_D: &str = "uN2YSQvxuxhQQ9Y1XXjYi1vr2ZTdzuoDX18PYu4LU-0";
    const PRIV_KEY_2_JWK_X: &str = "S2S3tjygMB0DkM-N9jYUgGLt_9_H6km5P9V6V_KS4_4";
    const PRIV_KEY_2_JWK_Y: &str = "03j8Tyqgrc4R4FAUV2C7-im96yMmfmO_5Om6Kr8YP3o";

    const SHARED_SECRET_HEX: &str =
        "163FAA3FC4815D47345C8E959F707B2F1D3537E7B2EA1DAEC23CA8D0A242CFF3";

    fn load_priv_key_1() -> PrivateKey<Static> {
        let private_key = URL_SAFE_NO_PAD.decode(PRIV_KEY_1_JWK_D).unwrap();
        let x = URL_SAFE_NO_PAD.decode(PRIV_KEY_1_JWK_X).unwrap();
        let y = URL_SAFE_NO_PAD.decode(PRIV_KEY_1_JWK_Y).unwrap();
        PrivateKey::<Static>::import(
            &EcKey::from_coordinates(Curve::P256, &private_key, &x, &y).unwrap(),
        )
        .unwrap()
    }

    fn load_priv_key_2() -> PrivateKey<Static> {
        let private_key = URL_SAFE_NO_PAD.decode(PRIV_KEY_2_JWK_D).unwrap();
        let x = URL_SAFE_NO_PAD.decode(PRIV_KEY_2_JWK_X).unwrap();
        let y = URL_SAFE_NO_PAD.decode(PRIV_KEY_2_JWK_Y).unwrap();
        PrivateKey::<Static>::import(
            &EcKey::from_coordinates(Curve::P256, &private_key, &x, &y).unwrap(),
        )
        .unwrap()
    }

    #[test]
    fn test_static_agreement() {
        let pub_key_raw = URL_SAFE_NO_PAD.decode(PUB_KEY_1_B64).unwrap();
        let peer_pub_key = UnparsedPublicKey::new(&ECDH_P256, &pub_key_raw);
        let prv_key = load_priv_key_2();
        let ikm = prv_key.agree_static(&peer_pub_key).unwrap();
        let secret = ikm
            .derive(|z| -> Result<Vec<u8>> { Ok(z.to_vec()) })
            .unwrap();
        let secret_b64 = hex::encode_upper(secret);
        assert_eq!(secret_b64, *SHARED_SECRET_HEX);
    }

    #[test]
    fn test_ephemeral_agreement_roundtrip() {
        let (our_prv_key, our_pub_key) =
            KeyPair::<Ephemeral>::generate(&ECDH_P256).unwrap().split();
        let (their_prv_key, their_pub_key) =
            KeyPair::<Ephemeral>::generate(&ECDH_P256).unwrap().split();
        let their_pub_key_raw = their_pub_key.to_bytes().unwrap();
        let peer_public_key_1 = UnparsedPublicKey::new(&ECDH_P256, &their_pub_key_raw);
        let ikm_1 = our_prv_key.agree(&peer_public_key_1).unwrap();
        let secret_1 = ikm_1
            .derive(|z| -> Result<Vec<u8>> { Ok(z.to_vec()) })
            .unwrap();
        let our_pub_key_raw = our_pub_key.to_bytes().unwrap();
        let peer_public_key_2 = UnparsedPublicKey::new(&ECDH_P256, &our_pub_key_raw);
        let ikm_2 = their_prv_key.agree(&peer_public_key_2).unwrap();
        let secret_2 = ikm_2
            .derive(|z| -> Result<Vec<u8>> { Ok(z.to_vec()) })
            .unwrap();
        assert_eq!(secret_1, secret_2);
    }

    #[test]
    fn test_compute_public_key() {
        let (prv_key, pub_key) = KeyPair::<Static>::generate(&ECDH_P256).unwrap().split();
        let computed_pub_key = prv_key.compute_public_key().unwrap();
        assert_eq!(
            computed_pub_key.to_bytes().unwrap(),
            pub_key.to_bytes().unwrap()
        );
    }

    #[test]
    fn test_compute_public_key_known_values() {
        let prv_key = load_priv_key_1();
        let pub_key = URL_SAFE_NO_PAD.decode(PUB_KEY_1_B64).unwrap();
        let computed_pub_key = prv_key.compute_public_key().unwrap();
        assert_eq!(computed_pub_key.to_bytes().unwrap(), pub_key.as_slice());

        let prv_key = load_priv_key_2();
        let computed_pub_key = prv_key.compute_public_key().unwrap();
        assert_ne!(computed_pub_key.to_bytes().unwrap(), pub_key.as_slice());
    }

    #[test]
    fn test_keys_byte_representations_roundtrip() {
        let key_pair = KeyPair::<Static>::generate(&ECDH_P256).unwrap();
        let prv_key = key_pair.private_key;
        let extracted_pub_key = prv_key.compute_public_key().unwrap();
        let ec_key = prv_key.export().unwrap();
        let prv_key_reconstructed = PrivateKey::<Static>::import(&ec_key).unwrap();
        let extracted_pub_key_reconstructed = prv_key.compute_public_key().unwrap();
        let ec_key_reconstructed = prv_key_reconstructed.export().unwrap();
        assert_eq!(ec_key.curve(), ec_key_reconstructed.curve());
        assert_eq!(ec_key.public_key(), ec_key_reconstructed.public_key());
        assert_eq!(ec_key.private_key(), ec_key_reconstructed.private_key());
        assert_eq!(
            extracted_pub_key.to_bytes().unwrap(),
            extracted_pub_key_reconstructed.to_bytes().unwrap()
        );
    }

    #[test]
    fn test_agreement_rejects_invalid_pubkeys() {
        let prv_key = load_priv_key_2();

        let mut invalid_pub_key = URL_SAFE_NO_PAD.decode(PUB_KEY_1_B64).unwrap();
        invalid_pub_key[0] = invalid_pub_key[0].wrapping_add(1);
        assert!(prv_key
            .agree_static(&UnparsedPublicKey::new(&ECDH_P256, &invalid_pub_key))
            .is_err());

        let mut invalid_pub_key = URL_SAFE_NO_PAD.decode(PUB_KEY_1_B64).unwrap();
        invalid_pub_key[0] = 0x02;
        assert!(prv_key
            .agree_static(&UnparsedPublicKey::new(&ECDH_P256, &invalid_pub_key))
            .is_err());

        let mut invalid_pub_key = URL_SAFE_NO_PAD.decode(PUB_KEY_1_B64).unwrap();
        invalid_pub_key[64] = invalid_pub_key[0].wrapping_add(1);
        assert!(prv_key
            .agree_static(&UnparsedPublicKey::new(&ECDH_P256, &invalid_pub_key))
            .is_err());

        let mut invalid_pub_key = [0u8; 65];
        assert!(prv_key
            .agree_static(&UnparsedPublicKey::new(&ECDH_P256, &invalid_pub_key))
            .is_err());
        invalid_pub_key[0] = 0x04;

        let mut invalid_pub_key = URL_SAFE_NO_PAD.decode(PUB_KEY_1_B64).unwrap().to_vec();
        invalid_pub_key = invalid_pub_key[0..64].to_vec();
        assert!(prv_key
            .agree_static(&UnparsedPublicKey::new(&ECDH_P256, &invalid_pub_key))
            .is_err());

        // From FxA tests at https://github.com/mozilla/fxa-crypto-relier/blob/04f61dc/test/deriver/DeriverUtils.js#L78
        // We trust that NSS will do the right thing here, but it seems worthwhile to confirm for completeness.
        let invalid_pub_key_b64 = "BEogZ-rnm44oJkKsOE6Tc7NwFMgmntf7Btm_Rc4atxcqq99Xq1RWNTFpk99pdQOSjUvwELss51PkmAGCXhLfMV0";
        let invalid_pub_key = URL_SAFE_NO_PAD.decode(invalid_pub_key_b64).unwrap();
        assert!(prv_key
            .agree_static(&UnparsedPublicKey::new(&ECDH_P256, &invalid_pub_key))
            .is_err());
    }
}