suggest/
fakespot.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/// Fakespot-specific logic
///
/// Score used to order Fakespot suggestions
///
/// FakespotScore contains several components, each in the range of [0, 1]
pub struct FakespotScore {
    /// Did the query match the `keywords` field exactly?
    keywords_score: f64,
    /// How well did the query match the `product_type` field?
    product_type_score: f64,
    /// Fakespot score from the RS data, this reflects the average review, number of reviews,
    /// Fakespot grade, etc.
    fakespot_score: f64,
}

impl FakespotScore {
    pub fn new(query: &str, keywords: String, product_type: String, fakespot_score: f64) -> Self {
        let query = query.to_lowercase();
        let query_terms = split_terms(&query);
        Self {
            keywords_score: calc_keywords_score(&query_terms, &keywords),
            product_type_score: calc_product_type_score(&query_terms, &product_type),
            fakespot_score,
        }
    }

    /// Convert a FakespotScore into the value to use in `Sugggestion::Fakespot::score`
    ///
    /// This converts FakespotScore into a single float that:
    ///   - Is > 0.3 so that Fakespot suggestions are preferred to AMP ones
    ///   - Reflects the Fakespot ordering:
    ///     - Suggestions with higher keywords_score are greater
    ///     - If keywords_score is tied, then suggestions with higher product_type_scores are greater
    ///     - If both are tied, then suggestions with higher fakespot_score are greater
    pub fn as_suggest_score(&self) -> f64 {
        0.30 + (0.01 * self.keywords_score)
            + (0.001 * self.product_type_score)
            + (0.0001 * self.fakespot_score)
    }
}

/// Split a string containing terms into a list of individual terms, normalized to lowercase
fn split_terms(string: &str) -> Vec<&str> {
    string.split_whitespace().collect()
}

fn calc_keywords_score(query_terms: &[&str], keywords: &str) -> f64 {
    // Note: We can assume keywords is lower-case, since we do that during ingestion
    let keyword_terms = split_terms(keywords);
    if keyword_terms.is_empty() {
        return 0.0;
    }

    if query_terms == keyword_terms {
        1.0
    } else {
        0.0
    }
}

fn calc_product_type_score(query_terms: &[&str], product_type: &str) -> f64 {
    // Note: We can assume product_type is lower-case, since we do that during ingestion
    let product_type_terms = split_terms(product_type);
    if product_type_terms.is_empty() {
        return 0.0;
    }
    let count = product_type_terms
        .iter()
        .filter(|t| query_terms.contains(t))
        .count() as f64;
    count / product_type_terms.len() as f64
}

#[cfg(test)]
mod tests {
    use super::*;

    struct KeywordsTestCase {
        keywords: &'static str,
        query: &'static str,
        expected: f64,
    }

    impl KeywordsTestCase {
        fn test(&self) {
            let actual =
                calc_keywords_score(&split_terms(&self.query.to_lowercase()), self.keywords);
            assert_eq!(
                actual, self.expected,
                "keywords: {} query: {} expected: {} actual: {actual}",
                self.keywords, self.query, self.expected,
            );
        }
    }

    #[test]
    fn test_keywords_score() {
        // Keyword score 1.0 on exact matches, 0.0 otherwise
        KeywordsTestCase {
            keywords: "apple",
            query: "apple",
            expected: 1.0,
        }
        .test();
        KeywordsTestCase {
            keywords: "apple",
            query: "android",
            expected: 0.0,
        }
        .test();
        KeywordsTestCase {
            keywords: "apple",
            query: "apple phone",
            expected: 0.0,
        }
        .test();
        // Empty keywords should always score 0.0
        KeywordsTestCase {
            keywords: "",
            query: "",
            expected: 0.0,
        }
        .test();
        KeywordsTestCase {
            keywords: "",
            query: "apple",
            expected: 0.0,
        }
        .test();
        // Matching should be case insensitive
        KeywordsTestCase {
            keywords: "apple",
            query: "Apple",
            expected: 1.0,
        }
        .test();
    }

    struct ProductTypeTestCase {
        query: &'static str,
        product_type: &'static str,
        expected: f64,
    }
    impl ProductTypeTestCase {
        fn test(&self) {
            let actual = calc_product_type_score(
                &split_terms(&self.query.to_lowercase()),
                self.product_type,
            );
            assert_eq!(
                actual, self.expected,
                "product_type: {} query: {} expected: {} actual: {actual}",
                self.product_type, self.query, self.expected,
            );
        }
    }

    #[test]
    fn test_product_type_score() {
        // Product type scores based on the percentage of terms in the product type that are also
        // present in the query
        ProductTypeTestCase {
            product_type: "standing desk",
            query: "standing desk",
            expected: 1.0,
        }
        .test();
        ProductTypeTestCase {
            product_type: "standing desk",
            query: "desk",
            expected: 0.5,
        }
        .test();
        ProductTypeTestCase {
            product_type: "standing desk",
            query: "desk desk desk",
            expected: 0.5,
        }
        .test();
        ProductTypeTestCase {
            product_type: "standing desk",
            query: "standing",
            expected: 0.5,
        }
        .test();
        ProductTypeTestCase {
            product_type: "standing desk",
            query: "phone",
            expected: 0.0,
        }
        .test();
        // Extra terms in the query are ignored
        ProductTypeTestCase {
            product_type: "standing desk",
            query: "standing desk for my office",
            expected: 1.0,
        }
        .test();
        // Empty product_type should always score 0.0
        ProductTypeTestCase {
            product_type: "",
            query: "",
            expected: 0.0,
        }
        .test();
        // Matching should be case insensitive
        ProductTypeTestCase {
            product_type: "desk",
            query: "Desk",
            expected: 1.0,
        }
        .test();
        // Extra spaces are ignored
        ProductTypeTestCase {
            product_type: "desk",
            query: "  desk  ",
            expected: 1.0,
        }
        .test();
    }
}