1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
use std::mem;
use std::sync::Arc;
use crate::common_metric_data::CommonMetricDataInternal;
use crate::error_recording::{record_error, test_get_num_recorded_errors, ErrorType};
use crate::histogram::{Bucketing, Histogram, HistogramType, LinearOrExponential};
use crate::metrics::{DistributionData, Metric, MetricType};
use crate::storage::StorageManager;
use crate::CommonMetricData;
use crate::Glean;
/// A custom distribution metric.
#[derive(Clone, Debug)]
pub struct CustomDistributionMetric {
meta: Arc<CommonMetricDataInternal>,
range_min: u64,
range_max: u64,
bucket_count: u64,
histogram_type: HistogramType,
}
/// Create a snapshot of the histogram.
///
/// The snapshot can be serialized into the payload format.
pub(crate) fn snapshot<B: Bucketing>(hist: &Histogram<B>) -> DistributionData {
DistributionData {
values: hist
.snapshot_values()
.into_iter()
.map(|(k, v)| (k as i64, v as i64))
.collect(),
sum: hist.sum() as i64,
count: hist.count() as i64,
}
}
impl MetricType for CustomDistributionMetric {
fn meta(&self) -> &CommonMetricDataInternal {
&self.meta
}
fn with_name(&self, name: String) -> Self {
let mut meta = (*self.meta).clone();
meta.inner.name = name;
Self {
meta: Arc::new(meta),
range_min: self.range_min,
range_max: self.range_max,
bucket_count: self.bucket_count,
histogram_type: self.histogram_type,
}
}
fn with_dynamic_label(&self, label: String) -> Self {
let mut meta = (*self.meta).clone();
meta.inner.dynamic_label = Some(label);
Self {
meta: Arc::new(meta),
range_min: self.range_min,
range_max: self.range_max,
bucket_count: self.bucket_count,
histogram_type: self.histogram_type,
}
}
}
// IMPORTANT:
//
// When changing this implementation, make sure all the operations are
// also declared in the related trait in `../traits/`.
impl CustomDistributionMetric {
/// Creates a new memory distribution metric.
pub fn new(
meta: CommonMetricData,
range_min: i64,
range_max: i64,
bucket_count: i64,
histogram_type: HistogramType,
) -> Self {
Self {
meta: Arc::new(meta.into()),
range_min: range_min as u64,
range_max: range_max as u64,
bucket_count: bucket_count as u64,
histogram_type,
}
}
/// Accumulates the provided signed samples in the metric.
///
/// This is required so that the platform-specific code can provide us with
/// 64 bit signed integers if no `u64` comparable type is available. This
/// will take care of filtering and reporting errors for any provided negative
/// sample.
///
/// # Arguments
///
/// - `samples` - The vector holding the samples to be recorded by the metric.
///
/// ## Notes
///
/// Discards any negative value in `samples` and report an [`ErrorType::InvalidValue`]
/// for each of them.
pub fn accumulate_samples(&self, samples: Vec<i64>) {
let metric = self.clone();
crate::launch_with_glean(move |glean| metric.accumulate_samples_sync(glean, &samples))
}
/// Accumulates precisely one signed sample and appends it to the metric.
///
/// Signed is required so that the platform-specific code can provide us with a
/// 64 bit signed integer if no `u64` comparable type is available. This
/// will take care of filtering and reporting errors.
///
/// # Arguments
///
/// - `sample` - The singular sample to be recorded by the metric.
///
/// ## Notes
///
/// Discards any negative value of `sample` and reports an
/// [`ErrorType::InvalidValue`](crate::ErrorType::InvalidValue).
pub fn accumulate_single_sample(&self, sample: i64) {
let metric = self.clone();
crate::launch_with_glean(move |glean| metric.accumulate_samples_sync(glean, &[sample]))
}
/// Accumulates the provided sample in the metric synchronously.
///
/// See [`accumulate_samples`](Self::accumulate_samples) for details.
#[doc(hidden)]
pub fn accumulate_samples_sync(&self, glean: &Glean, samples: &[i64]) {
if !self.should_record(glean) {
return;
}
let mut num_negative_samples = 0;
// Generic accumulation function to handle the different histogram types and count negative
// samples.
fn accumulate<B: Bucketing, F>(
samples: &[i64],
mut hist: Histogram<B>,
metric: F,
) -> (i32, Metric)
where
F: Fn(Histogram<B>) -> Metric,
{
let mut num_negative_samples = 0;
for &sample in samples.iter() {
if sample < 0 {
num_negative_samples += 1;
} else {
let sample = sample as u64;
hist.accumulate(sample);
}
}
(num_negative_samples, metric(hist))
}
glean.storage().record_with(glean, &self.meta, |old_value| {
let (num_negative, hist) = match self.histogram_type {
HistogramType::Linear => {
let hist = if let Some(Metric::CustomDistributionLinear(hist)) = old_value {
hist
} else {
Histogram::linear(
self.range_min,
self.range_max,
self.bucket_count as usize,
)
};
accumulate(samples, hist, Metric::CustomDistributionLinear)
}
HistogramType::Exponential => {
let hist = if let Some(Metric::CustomDistributionExponential(hist)) = old_value
{
hist
} else {
Histogram::exponential(
self.range_min,
self.range_max,
self.bucket_count as usize,
)
};
accumulate(samples, hist, Metric::CustomDistributionExponential)
}
};
num_negative_samples = num_negative;
hist
});
if num_negative_samples > 0 {
let msg = format!("Accumulated {} negative samples", num_negative_samples);
record_error(
glean,
&self.meta,
ErrorType::InvalidValue,
msg,
num_negative_samples,
);
}
}
/// Gets the currently stored histogram.
#[doc(hidden)]
pub fn get_value<'a, S: Into<Option<&'a str>>>(
&self,
glean: &Glean,
ping_name: S,
) -> Option<DistributionData> {
let queried_ping_name = ping_name
.into()
.unwrap_or_else(|| &self.meta().inner.send_in_pings[0]);
match StorageManager.snapshot_metric_for_test(
glean.storage(),
queried_ping_name,
&self.meta.identifier(glean),
self.meta.inner.lifetime,
) {
// Boxing the value, in order to return either of the possible buckets
Some(Metric::CustomDistributionExponential(hist)) => Some(snapshot(&hist)),
Some(Metric::CustomDistributionLinear(hist)) => Some(snapshot(&hist)),
_ => None,
}
}
/// **Test-only API (exported for FFI purposes).**
///
/// Gets the currently stored value as an integer.
///
/// This doesn't clear the stored value.
///
/// # Arguments
///
/// * `ping_name` - the optional name of the ping to retrieve the metric
/// for. Defaults to the first value in `send_in_pings`.
///
/// # Returns
///
/// The stored value or `None` if nothing stored.
pub fn test_get_value(&self, ping_name: Option<String>) -> Option<DistributionData> {
crate::block_on_dispatcher();
crate::core::with_glean(|glean| self.get_value(glean, ping_name.as_deref()))
}
/// **Exported for test purposes.**
///
/// Gets the number of recorded errors for the given metric and error type.
///
/// # Arguments
///
/// * `error` - The type of error
///
/// # Returns
///
/// The number of errors reported.
pub fn test_get_num_recorded_errors(&self, error: ErrorType) -> i32 {
crate::block_on_dispatcher();
crate::core::with_glean(|glean| {
test_get_num_recorded_errors(glean, self.meta(), error).unwrap_or(0)
})
}
/// **Experimental:** Start a new histogram buffer associated with this custom distribution metric.
///
/// A histogram buffer accumulates in-memory.
/// Data is recorded into the metric on drop.
pub fn start_buffer(&self) -> LocalCustomDistribution<'_> {
LocalCustomDistribution::new(self)
}
fn commit_histogram(&self, histogram: Histogram<LinearOrExponential>) {
let metric = self.clone();
crate::launch_with_glean(move |glean| {
glean
.storage()
.record_with(glean, &metric.meta, move |old_value| {
match metric.histogram_type {
HistogramType::Linear => {
let mut hist =
if let Some(Metric::CustomDistributionLinear(hist)) = old_value {
hist
} else {
Histogram::linear(
metric.range_min,
metric.range_max,
metric.bucket_count as usize,
)
};
hist._merge(&histogram);
Metric::CustomDistributionLinear(hist)
}
HistogramType::Exponential => {
let mut hist = if let Some(Metric::CustomDistributionExponential(
hist,
)) = old_value
{
hist
} else {
Histogram::exponential(
metric.range_min,
metric.range_max,
metric.bucket_count as usize,
)
};
hist._merge(&histogram);
Metric::CustomDistributionExponential(hist)
}
}
});
});
}
}
/// **Experimental:** A histogram buffer associated with a specific instance of a [`CustomDistributionMetric`].
///
/// Accumulation happens in-memory.
/// Data is merged into the metric on [`Drop::drop`].
pub struct LocalCustomDistribution<'a> {
histogram: Histogram<LinearOrExponential>,
metric: &'a CustomDistributionMetric,
}
impl<'a> LocalCustomDistribution<'a> {
/// Create a new histogram buffer referencing the custom distribution it will record into.
fn new(metric: &'a CustomDistributionMetric) -> Self {
let histogram = match metric.histogram_type {
HistogramType::Linear => Histogram::<LinearOrExponential>::_linear(
metric.range_min,
metric.range_max,
metric.bucket_count as usize,
),
HistogramType::Exponential => Histogram::<LinearOrExponential>::_exponential(
metric.range_min,
metric.range_max,
metric.bucket_count as usize,
),
};
Self { histogram, metric }
}
/// Accumulates one sample into the histogram.
///
/// The provided sample must be in the "unit" declared by the instance of the metric type
/// (e.g. if the instance this method was called on is using [`crate::TimeUnit::Second`], then
/// `sample` is assumed to be in seconds).
///
/// Accumulation happens in-memory only.
pub fn accumulate(&mut self, sample: u64) {
self.histogram.accumulate(sample)
}
/// Abandon this histogram buffer and don't commit accumulated data.
pub fn abandon(mut self) {
self.histogram.clear();
}
}
impl Drop for LocalCustomDistribution<'_> {
fn drop(&mut self) {
if self.histogram.is_empty() {
return;
}
// We want to move that value.
// A `0/0` histogram doesn't allocate.
let empty = Histogram::_linear(0, 0, 0);
let buffer = mem::replace(&mut self.histogram, empty);
self.metric.commit_histogram(buffer);
}
}