1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#![allow(dead_code)]

use failure::{
    ResultExt,
};

use std::borrow::Borrow;
use std::collections::HashMap;
use std::collections::hash_map::{
    Entry,
};
use std::fmt::Display;
use std::iter::{once, repeat};
use std::ops::Range;
use std::path::Path;

use itertools;
use itertools::Itertools;
use rusqlite;
use rusqlite::TransactionBehavior;
use rusqlite::limits::Limit;
use rusqlite::types::{ToSql, ToSqlOutput};

use ::{repeat_values, to_namespaced_keyword};
use bootstrap;

use edn::{
    DateTime,
    Utc,
    Uuid,
    Value,
};

use entids;
use mentat_core::{
    attribute,
    Attribute,
    AttributeBitFlags,
    Entid,
    FromMicros,
    IdentMap,
    Schema,
    AttributeMap,
    TypedValue,
    ToMicros,
    ValueType,
    ValueRc,
};

use errors::{
    DbErrorKind,
    Result,
};
use metadata;
use schema::{
    SchemaBuilding,
};
use types::{
    AVMap,
    AVPair,
    DB,
    Partition,
    PartitionMap,
};
use tx::transact;

use watcher::{
    NullWatcher,
};

// In PRAGMA foo='bar', `'bar'` must be a constant string (it cannot be a
// bound parameter), so we need to escape manually. According to
// https://www.sqlite.org/faq.html, the only character that must be escaped is
// the single quote, which is escaped by placing two single quotes in a row.
fn escape_string_for_pragma(s: &str) -> String {
    s.replace("'", "''")
}

fn make_connection(uri: &Path, maybe_encryption_key: Option<&str>) -> rusqlite::Result<rusqlite::Connection> {
    let conn = match uri.to_string_lossy().len() {
        0 => rusqlite::Connection::open_in_memory()?,
        _ => rusqlite::Connection::open(uri)?,
    };

    let page_size = 32768;

    let initial_pragmas = if let Some(encryption_key) = maybe_encryption_key {
        assert!(cfg!(feature = "sqlcipher"),
                "This function shouldn't be called with a key unless we have sqlcipher support");
        // Important: The `cipher_page_size` cannot be changed without breaking
        // the ability to open databases that were written when using a
        // different `cipher_page_size`. Additionally, it (AFAICT) must be a
        // positive multiple of `page_size`. We use the same value for both here.
        format!("
            PRAGMA key='{}';
            PRAGMA cipher_page_size={};
        ", escape_string_for_pragma(encryption_key), page_size)
    } else {
        String::new()
    };

    // See https://github.com/mozilla/mentat/issues/505 for details on temp_store
    // pragma and how it might interact together with consumers such as Firefox.
    // temp_store=2 is currently present to force SQLite to store temp files in memory.
    // Some of the platforms we support do not have a tmp partition (e.g. Android)
    // necessary to store temp files on disk. Ideally, consumers should be able to
    // override this behaviour (see issue 505).
    conn.execute_batch(&format!("
        {}
        PRAGMA journal_mode=wal;
        PRAGMA wal_autocheckpoint=32;
        PRAGMA journal_size_limit=3145728;
        PRAGMA foreign_keys=ON;
        PRAGMA temp_store=2;
    ", initial_pragmas))?;

    Ok(conn)
}

pub fn new_connection<T>(uri: T) -> rusqlite::Result<rusqlite::Connection> where T: AsRef<Path> {
    make_connection(uri.as_ref(), None)
}

#[cfg(feature = "sqlcipher")]
pub fn new_connection_with_key<P, S>(uri: P, encryption_key: S) -> rusqlite::Result<rusqlite::Connection>
where P: AsRef<Path>, S: AsRef<str> {
    make_connection(uri.as_ref(), Some(encryption_key.as_ref()))
}

#[cfg(feature = "sqlcipher")]
pub fn change_encryption_key<S>(conn: &rusqlite::Connection, encryption_key: S) -> rusqlite::Result<()>
where S: AsRef<str> {
    let escaped = escape_string_for_pragma(encryption_key.as_ref());
    // `conn.execute` complains that this returns a result, and using a query
    // for it requires more boilerplate.
    conn.execute_batch(&format!("PRAGMA rekey = '{}';", escaped))
}

/// Version history:
///
/// 1: initial Rust Mentat schema.
pub const CURRENT_VERSION: i32 = 1;

/// MIN_SQLITE_VERSION should be changed when there's a new minimum version of sqlite required
/// for the project to work.
const MIN_SQLITE_VERSION: i32 = 3008000;

const TRUE: &'static bool = &true;
const FALSE: &'static bool = &false;

/// Turn an owned bool into a static reference to a bool.
///
/// `rusqlite` is designed around references to values; this lets us use computed bools easily.
#[inline(always)]
fn to_bool_ref(x: bool) -> &'static bool {
    if x { TRUE } else { FALSE }
}

lazy_static! {
    /// SQL statements to be executed, in order, to create the Mentat SQL schema (version 1).
    #[cfg_attr(rustfmt, rustfmt_skip)]
    static ref V1_STATEMENTS: Vec<&'static str> = { vec![
        r#"CREATE TABLE datoms (e INTEGER NOT NULL, a SMALLINT NOT NULL, v BLOB NOT NULL, tx INTEGER NOT NULL,
                                value_type_tag SMALLINT NOT NULL,
                                index_avet TINYINT NOT NULL DEFAULT 0, index_vaet TINYINT NOT NULL DEFAULT 0,
                                index_fulltext TINYINT NOT NULL DEFAULT 0,
                                unique_value TINYINT NOT NULL DEFAULT 0)"#,
        r#"CREATE UNIQUE INDEX idx_datoms_eavt ON datoms (e, a, value_type_tag, v)"#,
        r#"CREATE UNIQUE INDEX idx_datoms_aevt ON datoms (a, e, value_type_tag, v)"#,

        // Opt-in index: only if a has :db/index true.
        r#"CREATE UNIQUE INDEX idx_datoms_avet ON datoms (a, value_type_tag, v, e) WHERE index_avet IS NOT 0"#,

        // Opt-in index: only if a has :db/valueType :db.type/ref.  No need for tag here since all
        // indexed elements are refs.
        r#"CREATE UNIQUE INDEX idx_datoms_vaet ON datoms (v, a, e) WHERE index_vaet IS NOT 0"#,

        // Opt-in index: only if a has :db/fulltext true; thus, it has :db/valueType :db.type/string,
        // which is not :db/valueType :db.type/ref.  That is, index_vaet and index_fulltext are mutually
        // exclusive.
        r#"CREATE INDEX idx_datoms_fulltext ON datoms (value_type_tag, v, a, e) WHERE index_fulltext IS NOT 0"#,

        // TODO: possibly remove this index.  :db.unique/{value,identity} should be asserted by the
        // transactor in all cases, but the index may speed up some of SQLite's query planning.  For now,
        // it serves to validate the transactor implementation.  Note that tag is needed here to
        // differentiate, e.g., keywords and strings.
        r#"CREATE UNIQUE INDEX idx_datoms_unique_value ON datoms (a, value_type_tag, v) WHERE unique_value IS NOT 0"#,

        r#"CREATE TABLE transactions (e INTEGER NOT NULL, a SMALLINT NOT NULL, v BLOB NOT NULL, tx INTEGER NOT NULL, added TINYINT NOT NULL DEFAULT 1, value_type_tag SMALLINT NOT NULL)"#,
        r#"CREATE INDEX idx_transactions_tx ON transactions (tx, added)"#,

        // Fulltext indexing.
        // A fulltext indexed value v is an integer rowid referencing fulltext_values.

        // Optional settings:
        // tokenize="porter"#,
        // prefix='2,3'
        // By default we use Unicode-aware tokenizing (particularly for case folding), but preserve
        // diacritics.
        r#"CREATE VIRTUAL TABLE fulltext_values
             USING FTS4 (text NOT NULL, searchid INT, tokenize=unicode61 "remove_diacritics=0")"#,

        // This combination of view and triggers allows you to transparently
        // update-or-insert into FTS. Just INSERT INTO fulltext_values_view (text, searchid).
        r#"CREATE VIEW fulltext_values_view AS SELECT * FROM fulltext_values"#,
        r#"CREATE TRIGGER replace_fulltext_searchid
             INSTEAD OF INSERT ON fulltext_values_view
             WHEN EXISTS (SELECT 1 FROM fulltext_values WHERE text = new.text)
             BEGIN
               UPDATE fulltext_values SET searchid = new.searchid WHERE text = new.text;
             END"#,
        r#"CREATE TRIGGER insert_fulltext_searchid
             INSTEAD OF INSERT ON fulltext_values_view
             WHEN NOT EXISTS (SELECT 1 FROM fulltext_values WHERE text = new.text)
             BEGIN
               INSERT INTO fulltext_values (text, searchid) VALUES (new.text, new.searchid);
             END"#,

        // A view transparently interpolating fulltext indexed values into the datom structure.
        r#"CREATE VIEW fulltext_datoms AS
             SELECT e, a, fulltext_values.text AS v, tx, value_type_tag, index_avet, index_vaet, index_fulltext, unique_value
               FROM datoms, fulltext_values
               WHERE datoms.index_fulltext IS NOT 0 AND datoms.v = fulltext_values.rowid"#,

        // A view transparently interpolating all entities (fulltext and non-fulltext) into the datom structure.
        r#"CREATE VIEW all_datoms AS
             SELECT e, a, v, tx, value_type_tag, index_avet, index_vaet, index_fulltext, unique_value
               FROM datoms
               WHERE index_fulltext IS 0
             UNION ALL
             SELECT e, a, v, tx, value_type_tag, index_avet, index_vaet, index_fulltext, unique_value
               FROM fulltext_datoms"#,

        // Materialized views of the metadata.
        r#"CREATE TABLE idents (e INTEGER NOT NULL, a SMALLINT NOT NULL, v BLOB NOT NULL, value_type_tag SMALLINT NOT NULL)"#,
        r#"CREATE INDEX idx_idents_unique ON idents (e, a, v, value_type_tag)"#,
        r#"CREATE TABLE schema (e INTEGER NOT NULL, a SMALLINT NOT NULL, v BLOB NOT NULL, value_type_tag SMALLINT NOT NULL)"#,
        r#"CREATE INDEX idx_schema_unique ON schema (e, a, v, value_type_tag)"#,
        // TODO: store entid instead of ident for partition name.
        r#"CREATE TABLE parts (part TEXT NOT NULL PRIMARY KEY, start INTEGER NOT NULL, idx INTEGER NOT NULL)"#,
        ]
    };
}

/// Set the SQLite user version.
///
/// Mentat manages its own SQL schema version using the user version.  See the [SQLite
/// documentation](https://www.sqlite.org/pragma.html#pragma_user_version).
fn set_user_version(conn: &rusqlite::Connection, version: i32) -> Result<()> {
    conn.execute(&format!("PRAGMA user_version = {}", version), &[])
        .context(DbErrorKind::CouldNotSetVersionPragma)?;
    Ok(())
}

/// Get the SQLite user version.
///
/// Mentat manages its own SQL schema version using the user version.  See the [SQLite
/// documentation](https://www.sqlite.org/pragma.html#pragma_user_version).
fn get_user_version(conn: &rusqlite::Connection) -> Result<i32> {
    let v = conn.query_row("PRAGMA user_version", &[], |row| {
        row.get(0)
    }).context(DbErrorKind::CouldNotGetVersionPragma)?;
    Ok(v)
}

/// Do just enough work that either `create_current_version` or sync can populate the DB.
pub fn create_empty_current_version(conn: &mut rusqlite::Connection) -> Result<(rusqlite::Transaction, DB)> {
    let tx = conn.transaction_with_behavior(TransactionBehavior::Exclusive)?;

    for statement in (&V1_STATEMENTS).iter() {
        tx.execute(statement, &[])?;
    }

    set_user_version(&tx, CURRENT_VERSION)?;

    let bootstrap_schema = bootstrap::bootstrap_schema();
    let bootstrap_partition_map = bootstrap::bootstrap_partition_map();

    Ok((tx, DB::new(bootstrap_partition_map, bootstrap_schema)))
}

// TODO: rename "SQL" functions to align with "datoms" functions.
pub fn create_current_version(conn: &mut rusqlite::Connection) -> Result<DB> {
    let (tx, mut db) = create_empty_current_version(conn)?;

    // TODO: think more carefully about allocating new parts and bitmasking part ranges.
    // TODO: install these using bootstrap assertions.  It's tricky because the part ranges are implicit.
    // TODO: one insert, chunk into 999/3 sections, for safety.
    // This is necessary: `transact` will only UPDATE parts, not INSERT them if they're missing.
    for (part, partition) in db.partition_map.iter() {
        // TODO: Convert "keyword" part to SQL using Value conversion.
        tx.execute("INSERT INTO parts VALUES (?, ?, ?)", &[part, &partition.start, &partition.index])?;
    }

    // TODO: return to transact_internal to self-manage the encompassing SQLite transaction.
    let bootstrap_schema_for_mutation = Schema::default(); // The bootstrap transaction will populate this schema.

    let (_report, next_partition_map, next_schema, _watcher) = transact(&tx, db.partition_map, &bootstrap_schema_for_mutation, &db.schema, NullWatcher(), bootstrap::bootstrap_entities())?;

    // TODO: validate metadata mutations that aren't schema related, like additional partitions.
    if let Some(next_schema) = next_schema {
        if next_schema != db.schema {
            bail!(DbErrorKind::NotYetImplemented(format!("Initial bootstrap transaction did not produce expected bootstrap schema")));
        }
    }

    // TODO: use the drop semantics to do this automagically?
    tx.commit()?;

    db.partition_map = next_partition_map;
    Ok(db)
}

pub fn ensure_current_version(conn: &mut rusqlite::Connection) -> Result<DB> {
    if rusqlite::version_number() < MIN_SQLITE_VERSION {
        panic!("Mentat requires at least sqlite {}", MIN_SQLITE_VERSION);
    }

    let user_version = get_user_version(&conn)?;
    match user_version {
        0               => create_current_version(conn),
        CURRENT_VERSION => read_db(conn),

        // TODO: support updating an existing store.
        v => bail!(DbErrorKind::NotYetImplemented(format!("Opening databases with Mentat version: {}", v))),
    }
}

pub trait TypedSQLValue {
    fn from_sql_value_pair(value: rusqlite::types::Value, value_type_tag: i32) -> Result<TypedValue>;
    fn to_sql_value_pair<'a>(&'a self) -> (ToSqlOutput<'a>, i32);
    fn from_edn_value(value: &Value) -> Option<TypedValue>;
    fn to_edn_value_pair(&self) -> (Value, ValueType);
}

impl TypedSQLValue for TypedValue {
    /// Given a SQLite `value` and a `value_type_tag`, return the corresponding `TypedValue`.
    fn from_sql_value_pair(value: rusqlite::types::Value, value_type_tag: i32) -> Result<TypedValue> {
        match (value_type_tag, value) {
            (0, rusqlite::types::Value::Integer(x)) => Ok(TypedValue::Ref(x)),
            (1, rusqlite::types::Value::Integer(x)) => Ok(TypedValue::Boolean(0 != x)),

            // Negative integers are simply times before 1970.
            (4, rusqlite::types::Value::Integer(x)) => Ok(TypedValue::Instant(DateTime::<Utc>::from_micros(x))),

            // SQLite distinguishes integral from decimal types, allowing long and double to
            // share a tag.
            (5, rusqlite::types::Value::Integer(x)) => Ok(TypedValue::Long(x)),
            (5, rusqlite::types::Value::Real(x)) => Ok(TypedValue::Double(x.into())),
            (10, rusqlite::types::Value::Text(x)) => Ok(x.into()),
            (11, rusqlite::types::Value::Blob(x)) => {
                let u = Uuid::from_bytes(x.as_slice());
                if u.is_err() {
                    // Rather than exposing Uuid's ParseError…
                    bail!(DbErrorKind::BadSQLValuePair(rusqlite::types::Value::Blob(x),
                                                     value_type_tag));
                }
                Ok(TypedValue::Uuid(u.unwrap()))
            },
            (13, rusqlite::types::Value::Text(x)) => {
                to_namespaced_keyword(&x).map(|k| k.into())
            },
            (_, value) => bail!(DbErrorKind::BadSQLValuePair(value, value_type_tag)),
        }
    }

    /// Given an EDN `value`, return a corresponding Mentat `TypedValue`.
    ///
    /// An EDN `Value` does not encode a unique Mentat `ValueType`, so the composition
    /// `from_edn_value(first(to_edn_value_pair(...)))` loses information.  Additionally, there are
    /// EDN values which are not Mentat typed values.
    ///
    /// This function is deterministic.
    fn from_edn_value(value: &Value) -> Option<TypedValue> {
        match value {
            &Value::Boolean(x) => Some(TypedValue::Boolean(x)),
            &Value::Instant(x) => Some(TypedValue::Instant(x)),
            &Value::Integer(x) => Some(TypedValue::Long(x)),
            &Value::Uuid(x) => Some(TypedValue::Uuid(x)),
            &Value::Float(ref x) => Some(TypedValue::Double(x.clone())),
            &Value::Text(ref x) => Some(x.clone().into()),
            &Value::Keyword(ref x) => Some(x.clone().into()),
            _ => None
        }
    }

    /// Return the corresponding SQLite `value` and `value_type_tag` pair.
    fn to_sql_value_pair<'a>(&'a self) -> (ToSqlOutput<'a>, i32) {
        match self {
            &TypedValue::Ref(x) => (rusqlite::types::Value::Integer(x).into(), 0),
            &TypedValue::Boolean(x) => (rusqlite::types::Value::Integer(if x { 1 } else { 0 }).into(), 1),
            &TypedValue::Instant(x) => (rusqlite::types::Value::Integer(x.to_micros()).into(), 4),
            // SQLite distinguishes integral from decimal types, allowing long and double to share a tag.
            &TypedValue::Long(x) => (rusqlite::types::Value::Integer(x).into(), 5),
            &TypedValue::Double(x) => (rusqlite::types::Value::Real(x.into_inner()).into(), 5),
            &TypedValue::String(ref x) => (rusqlite::types::ValueRef::Text(x.as_str()).into(), 10),
            &TypedValue::Uuid(ref u) => (rusqlite::types::Value::Blob(u.as_bytes().to_vec()).into(), 11),
            &TypedValue::Keyword(ref x) => (rusqlite::types::ValueRef::Text(&x.to_string()).into(), 13),
        }
    }

    /// Return the corresponding EDN `value` and `value_type` pair.
    fn to_edn_value_pair(&self) -> (Value, ValueType) {
        match self {
            &TypedValue::Ref(x) => (Value::Integer(x), ValueType::Ref),
            &TypedValue::Boolean(x) => (Value::Boolean(x), ValueType::Boolean),
            &TypedValue::Instant(x) => (Value::Instant(x), ValueType::Instant),
            &TypedValue::Long(x) => (Value::Integer(x), ValueType::Long),
            &TypedValue::Double(x) => (Value::Float(x), ValueType::Double),
            &TypedValue::String(ref x) => (Value::Text(x.as_ref().clone()), ValueType::String),
            &TypedValue::Uuid(ref u) => (Value::Uuid(u.clone()), ValueType::Uuid),
            &TypedValue::Keyword(ref x) => (Value::Keyword(x.as_ref().clone()), ValueType::Keyword),
        }
    }
}

/// Read an arbitrary [e a v value_type_tag] materialized view from the given table in the SQL
/// store.
fn read_materialized_view(conn: &rusqlite::Connection, table: &str) -> Result<Vec<(Entid, Entid, TypedValue)>> {
    let mut stmt: rusqlite::Statement = conn.prepare(format!("SELECT e, a, v, value_type_tag FROM {}", table).as_str())?;
    let m: Result<Vec<(Entid, Entid, TypedValue)>> = stmt.query_and_then(&[], |row| {
        let e: Entid = row.get_checked(0)?;
        let a: Entid = row.get_checked(1)?;
        let v: rusqlite::types::Value = row.get_checked(2)?;
        let value_type_tag: i32 = row.get_checked(3)?;
        let typed_value = TypedValue::from_sql_value_pair(v, value_type_tag)?;
        Ok((e, a, typed_value))
    })?.collect();
    m
}

/// Read the partition map materialized view from the given SQL store.
fn read_partition_map(conn: &rusqlite::Connection) -> Result<PartitionMap> {
    let mut stmt: rusqlite::Statement = conn.prepare("SELECT part, start, idx FROM parts")?;
    let m = stmt.query_and_then(&[], |row| -> Result<(String, Partition)> {
        Ok((row.get_checked(0)?, Partition::new(row.get_checked(1)?, row.get_checked(2)?)))
    })?.collect();
    m
}

/// Read the ident map materialized view from the given SQL store.
fn read_ident_map(conn: &rusqlite::Connection) -> Result<IdentMap> {
    let v = read_materialized_view(conn, "idents")?;
    v.into_iter().map(|(e, a, typed_value)| {
        if a != entids::DB_IDENT {
            bail!(DbErrorKind::NotYetImplemented(format!("bad idents materialized view: expected :db/ident but got {}", a)));
        }
        if let TypedValue::Keyword(keyword) = typed_value {
            Ok((keyword.as_ref().clone(), e))
        } else {
            bail!(DbErrorKind::NotYetImplemented(format!("bad idents materialized view: expected [entid :db/ident keyword] but got [entid :db/ident {:?}]", typed_value)));
        }
    }).collect()
}

/// Read the schema materialized view from the given SQL store.
fn read_attribute_map(conn: &rusqlite::Connection) -> Result<AttributeMap> {
    let entid_triples = read_materialized_view(conn, "schema")?;
    let mut attribute_map = AttributeMap::default();
    metadata::update_attribute_map_from_entid_triples(&mut attribute_map, entid_triples, ::std::iter::empty())?;
    Ok(attribute_map)
}

/// Read the materialized views from the given SQL store and return a Mentat `DB` for querying and
/// applying transactions.
pub fn read_db(conn: &rusqlite::Connection) -> Result<DB> {
    let partition_map = read_partition_map(conn)?;
    let ident_map = read_ident_map(conn)?;
    let attribute_map = read_attribute_map(conn)?;
    let schema = Schema::from_ident_map_and_attribute_map(ident_map, attribute_map)?;
    Ok(DB::new(partition_map, schema))
}

/// Internal representation of an [e a v added] datom, ready to be transacted against the store.
pub type ReducedEntity<'a> = (Entid, Entid, &'a Attribute, TypedValue, bool);

#[derive(Clone,Debug,Eq,Hash,Ord,PartialOrd,PartialEq)]
pub enum SearchType {
    Exact,
    Inexact,
}

/// `MentatStoring` will be the trait that encapsulates the storage layer.  It is consumed by the
/// transaction processing layer.
///
/// Right now, the only implementation of `MentatStoring` is the SQLite-specific SQL schema.  In the
/// future, we might consider other SQL engines (perhaps with different fulltext indexing), or
/// entirely different data stores, say ones shaped like key-value stores.
pub trait MentatStoring {
    /// Given a slice of [a v] lookup-refs, look up the corresponding [e a v] triples.
    ///
    /// It is assumed that the attribute `a` in each lookup-ref is `:db/unique`, so that at most one
    /// matching [e a v] triple exists.  (If this is not true, some matching entid `e` will be
    /// chosen non-deterministically, if one exists.)
    ///
    /// Returns a map &(a, v) -> e, to avoid cloning potentially large values.  The keys of the map
    /// are exactly those (a, v) pairs that have an assertion [e a v] in the store.
    fn resolve_avs<'a>(&self, avs: &'a [&'a AVPair]) -> Result<AVMap<'a>>;

    /// Begin (or prepare) the underlying storage layer for a new Mentat transaction.
    ///
    /// Use this to create temporary tables, prepare indices, set pragmas, etc, before the initial
    /// `insert_non_fts_searches` invocation.
    fn begin_tx_application(&self) -> Result<()>;

    // TODO: this is not a reasonable abstraction, but I don't want to really consider non-SQL storage just yet.
    fn insert_non_fts_searches<'a>(&self, entities: &'a [ReducedEntity], search_type: SearchType) -> Result<()>;
    fn insert_fts_searches<'a>(&self, entities: &'a [ReducedEntity], search_type: SearchType) -> Result<()>;

    /// Finalize the underlying storage layer after a Mentat transaction.
    ///
    /// Use this to finalize temporary tables, complete indices, revert pragmas, etc, after the
    /// final `insert_non_fts_searches` invocation.
    fn commit_transaction(&self, tx_id: Entid) -> Result<()>;

    /// Extract metadata-related [e a typed_value added] datoms committed in the given transaction.
    fn committed_metadata_assertions(&self, tx_id: Entid) -> Result<Vec<(Entid, Entid, TypedValue, bool)>>;
}

/// Take search rows and complete `temp.search_results`.
///
/// See https://github.com/mozilla/mentat/wiki/Transacting:-entity-to-SQL-translation.
fn search(conn: &rusqlite::Connection) -> Result<()> {
    // First is fast, only one table walk: lookup by exact eav.
    // Second is slower, but still only one table walk: lookup old value by ea.
    let s = r#"
      INSERT INTO temp.search_results
      SELECT t.e0, t.a0, t.v0, t.value_type_tag0, t.added0, t.flags0, ':db.cardinality/many', d.rowid, d.v
      FROM temp.exact_searches AS t
      LEFT JOIN datoms AS d
      ON t.e0 = d.e AND
         t.a0 = d.a AND
         t.value_type_tag0 = d.value_type_tag AND
         t.v0 = d.v

      UNION ALL

      SELECT t.e0, t.a0, t.v0, t.value_type_tag0, t.added0, t.flags0, ':db.cardinality/one', d.rowid, d.v
      FROM temp.inexact_searches AS t
      LEFT JOIN datoms AS d
      ON t.e0 = d.e AND
         t.a0 = d.a"#;

    let mut stmt = conn.prepare_cached(s)?;
    stmt.execute(&[]).context(DbErrorKind::CouldNotSearch)?;
    Ok(())
}

/// Insert the new transaction into the `transactions` table.
///
/// This turns the contents of `search_results` into a new transaction.
///
/// See https://github.com/mozilla/mentat/wiki/Transacting:-entity-to-SQL-translation.
fn insert_transaction(conn: &rusqlite::Connection, tx: Entid) -> Result<()> {
    // Mentat follows Datomic and treats its input as a set.  That means it is okay to transact the
    // same [e a v] twice in one transaction.  However, we don't want to represent the transacted
    // datom twice.  Therefore, the transactor unifies repeated datoms, and in addition we add
    // indices to the search inputs and search results to ensure that we don't see repeated datoms
    // at this point.

    let s = r#"
      INSERT INTO transactions (e, a, v, tx, added, value_type_tag)
      SELECT e0, a0, v0, ?, 1, value_type_tag0
      FROM temp.search_results
      WHERE added0 IS 1 AND ((rid IS NULL) OR ((rid IS NOT NULL) AND (v0 IS NOT v)))"#;

    let mut stmt = conn.prepare_cached(s)?;
    stmt.execute(&[&tx]).context(DbErrorKind::TxInsertFailedToAddMissingDatoms)?;

    let s = r#"
      INSERT INTO transactions (e, a, v, tx, added, value_type_tag)
      SELECT e0, a0, v, ?, 0, value_type_tag0
      FROM temp.search_results
      WHERE rid IS NOT NULL AND
            ((added0 IS 0) OR
             (added0 IS 1 AND search_type IS ':db.cardinality/one' AND v0 IS NOT v))"#;

    let mut stmt = conn.prepare_cached(s)?;
    stmt.execute(&[&tx]).context(DbErrorKind::TxInsertFailedToRetractDatoms)?;

    Ok(())
}

/// Update the contents of the `datoms` materialized view with the new transaction.
///
/// This applies the contents of `search_results` to the `datoms` table (in place).
///
/// See https://github.com/mozilla/mentat/wiki/Transacting:-entity-to-SQL-translation.
fn update_datoms(conn: &rusqlite::Connection, tx: Entid) -> Result<()> {
    // Delete datoms that were retracted, or those that were :db.cardinality/one and will be
    // replaced.
    let s = r#"
        WITH ids AS (SELECT rid
                     FROM temp.search_results
                     WHERE rid IS NOT NULL AND
                           ((added0 IS 0) OR
                            (added0 IS 1 AND search_type IS ':db.cardinality/one' AND v0 IS NOT v)))
        DELETE FROM datoms WHERE rowid IN ids"#;

    let mut stmt = conn.prepare_cached(s)?;
    stmt.execute(&[]).context(DbErrorKind::DatomsUpdateFailedToRetract)?;

    // Insert datoms that were added and not already present. We also must expand our bitfield into
    // flags.  Since Mentat follows Datomic and treats its input as a set, it is okay to transact
    // the same [e a v] twice in one transaction, but we don't want to represent the transacted
    // datom twice in datoms.  The transactor unifies repeated datoms, and in addition we add
    // indices to the search inputs and search results to ensure that we don't see repeated datoms
    // at this point.
    let s = format!(r#"
      INSERT INTO datoms (e, a, v, tx, value_type_tag, index_avet, index_vaet, index_fulltext, unique_value)
      SELECT e0, a0, v0, ?, value_type_tag0,
             flags0 & {} IS NOT 0,
             flags0 & {} IS NOT 0,
             flags0 & {} IS NOT 0,
             flags0 & {} IS NOT 0
      FROM temp.search_results
      WHERE added0 IS 1 AND ((rid IS NULL) OR ((rid IS NOT NULL) AND (v0 IS NOT v)))"#,
      AttributeBitFlags::IndexAVET as u8,
      AttributeBitFlags::IndexVAET as u8,
      AttributeBitFlags::IndexFulltext as u8,
      AttributeBitFlags::UniqueValue as u8);

    let mut stmt = conn.prepare_cached(&s)?;
    stmt.execute(&[&tx]).context(DbErrorKind::DatomsUpdateFailedToAdd)?;
    Ok(())
}

impl MentatStoring for rusqlite::Connection {
    fn resolve_avs<'a>(&self, avs: &'a [&'a AVPair]) -> Result<AVMap<'a>> {
        // Start search_id's at some identifiable number.
        let initial_search_id = 2000;
        let bindings_per_statement = 4;

        // We map [a v] -> numeric search_id -> e, and then we use the search_id lookups to finally
        // produce the map [a v] -> e.
        //
        // TODO: `collect` into a HashSet so that any (a, v) is resolved at most once.
        let max_vars = self.limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER) as usize;
        let chunks: itertools::IntoChunks<_> = avs.into_iter().enumerate().chunks(max_vars / 4);

        // We'd like to `flat_map` here, but it's not obvious how to `flat_map` across `Result`.
        // Alternatively, this is a `fold`, and it might be wise to express it as such.
        let results: Result<Vec<Vec<_>>> = chunks.into_iter().map(|chunk| -> Result<Vec<_>> {
            let mut count = 0;

            // We must keep these computed values somewhere to reference them later, so we can't
            // combine this `map` and the subsequent `flat_map`.
            let block: Vec<(i64, i64, ToSqlOutput<'a>, i32)> = chunk.map(|(index, &&(a, ref v))| {
                count += 1;
                let search_id: i64 = initial_search_id + index as i64;
                let (value, value_type_tag) = v.to_sql_value_pair();
                (search_id, a, value, value_type_tag)
            }).collect();

            // `params` reference computed values in `block`.
            let params: Vec<&ToSql> = block.iter().flat_map(|&(ref searchid, ref a, ref value, ref value_type_tag)| {
                // Avoid inner heap allocation.
                once(searchid as &ToSql)
                    .chain(once(a as &ToSql)
                           .chain(once(value as &ToSql)
                                  .chain(once(value_type_tag as &ToSql))))
            }).collect();

            // TODO: cache these statements for selected values of `count`.
            // TODO: query against `datoms` and UNION ALL with `fulltext_datoms` rather than
            // querying against `all_datoms`.  We know all the attributes, and in the common case,
            // where most unique attributes will not be fulltext-indexed, we'll be querying just
            // `datoms`, which will be much faster.ˇ
            assert!(bindings_per_statement * count < max_vars, "Too many values: {} * {} >= {}", bindings_per_statement, count, max_vars);

            let values: String = repeat_values(bindings_per_statement, count);
            let s: String = format!("WITH t(search_id, a, v, value_type_tag) AS (VALUES {}) SELECT t.search_id, d.e \
                                     FROM t, all_datoms AS d \
                                     WHERE d.index_avet IS NOT 0 AND d.a = t.a AND d.value_type_tag = t.value_type_tag AND d.v = t.v",
                                    values);
            let mut stmt: rusqlite::Statement = self.prepare(s.as_str())?;

            let m: Result<Vec<(i64, Entid)>> = stmt.query_and_then(&params, |row| -> Result<(i64, Entid)> {
                Ok((row.get_checked(0)?, row.get_checked(1)?))
            })?.collect();
            m
        }).collect::<Result<Vec<Vec<(i64, Entid)>>>>();

        // Flatten.
        let results: Vec<(i64, Entid)> = results?.as_slice().concat();

        // Create map [a v] -> e.
        let m: HashMap<&'a AVPair, Entid> = results.into_iter().map(|(search_id, entid)| {
            let index: usize = (search_id - initial_search_id) as usize;
            (avs[index], entid)
        }).collect();
        Ok(m)
    }

    /// Create empty temporary tables for search parameters and search results.
    fn begin_tx_application(&self) -> Result<()> {
        // We can't do this in one shot, since we can't prepare a batch statement.
        let statements = [
            r#"DROP TABLE IF EXISTS temp.exact_searches"#,
            // Note that `flags0` is a bitfield of several flags compressed via
            // `AttributeBitFlags.flags()` in the temporary search tables, later
            // expanded in the `datoms` insertion.
            r#"CREATE TABLE temp.exact_searches (
               e0 INTEGER NOT NULL,
               a0 SMALLINT NOT NULL,
               v0 BLOB NOT NULL,
               value_type_tag0 SMALLINT NOT NULL,
               added0 TINYINT NOT NULL,
               flags0 TINYINT NOT NULL)"#,
            // There's no real need to split exact and inexact searches, so long as we keep things
            // in the correct place and performant.  Splitting has the advantage of being explicit
            // and slightly easier to read, so we'll do that to start.
            r#"DROP TABLE IF EXISTS temp.inexact_searches"#,
            r#"CREATE TABLE temp.inexact_searches (
               e0 INTEGER NOT NULL,
               a0 SMALLINT NOT NULL,
               v0 BLOB NOT NULL,
               value_type_tag0 SMALLINT NOT NULL,
               added0 TINYINT NOT NULL,
               flags0 TINYINT NOT NULL)"#,

            // It is fine to transact the same [e a v] twice in one transaction, but the transaction
            // processor should unify such repeated datoms.  This index will cause insertion to fail
            // if the transaction processor incorrectly tries to assert the same (cardinality one)
            // datom twice.  (Sadly, the failure is opaque.)
            r#"CREATE UNIQUE INDEX IF NOT EXISTS temp.inexact_searches_unique ON inexact_searches (e0, a0) WHERE added0 = 1"#,
            r#"DROP TABLE IF EXISTS temp.search_results"#,
            // TODO: don't encode search_type as a STRING.  This is explicit and much easier to read
            // than another flag, so we'll do it to start, and optimize later.
            r#"CREATE TABLE temp.search_results (
               e0 INTEGER NOT NULL,
               a0 SMALLINT NOT NULL,
               v0 BLOB NOT NULL,
               value_type_tag0 SMALLINT NOT NULL,
               added0 TINYINT NOT NULL,
               flags0 TINYINT NOT NULL,
               search_type STRING NOT NULL,
               rid INTEGER,
               v BLOB)"#,
            // It is fine to transact the same [e a v] twice in one transaction, but the transaction
            // processor should identify those datoms.  This index will cause insertion to fail if
            // the internals of the database searching code incorrectly find the same datom twice.
            // (Sadly, the failure is opaque.)
            //
            // N.b.: temp goes on index name, not table name.  See http://stackoverflow.com/a/22308016.
            r#"CREATE UNIQUE INDEX IF NOT EXISTS temp.search_results_unique ON search_results (e0, a0, v0, value_type_tag0)"#,
        ];

        for statement in &statements {
            let mut stmt = self.prepare_cached(statement)?;
            stmt.execute(&[]).context(DbErrorKind::FailedToCreateTempTables)?;
        }

        Ok(())
    }

    /// Insert search rows into temporary search tables.
    ///
    /// Eventually, the details of this approach will be captured in
    /// https://github.com/mozilla/mentat/wiki/Transacting:-entity-to-SQL-translation.
    fn insert_non_fts_searches<'a>(&self, entities: &'a [ReducedEntity<'a>], search_type: SearchType) -> Result<()> {
        let bindings_per_statement = 6;

        let max_vars = self.limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER) as usize;
        let chunks: itertools::IntoChunks<_> = entities.into_iter().chunks(max_vars / bindings_per_statement);

        // We'd like to flat_map here, but it's not obvious how to flat_map across Result.
        let results: Result<Vec<()>> = chunks.into_iter().map(|chunk| -> Result<()> {
            let mut count = 0;

            // We must keep these computed values somewhere to reference them later, so we can't
            // combine this map and the subsequent flat_map.
            // (e0, a0, v0, value_type_tag0, added0, flags0)
            let block: Result<Vec<(i64 /* e */,
                                   i64 /* a */,
                                   ToSqlOutput<'a> /* value */,
                                   i32 /* value_type_tag */,
                                   bool, /* added0 */
                                   u8 /* flags0 */)>> = chunk.map(|&(e, a, ref attribute, ref typed_value, added)| {
                count += 1;

                // Now we can represent the typed value as an SQL value.
                let (value, value_type_tag): (ToSqlOutput, i32) = typed_value.to_sql_value_pair();

                Ok((e, a, value, value_type_tag, added, attribute.flags()))
            }).collect();
            let block = block?;

            // `params` reference computed values in `block`.
            let params: Vec<&ToSql> = block.iter().flat_map(|&(ref e, ref a, ref value, ref value_type_tag, added, ref flags)| {
                // Avoid inner heap allocation.
                // TODO: extract some finite length iterator to make this less indented!
                once(e as &ToSql)
                    .chain(once(a as &ToSql)
                           .chain(once(value as &ToSql)
                                  .chain(once(value_type_tag as &ToSql)
                                         .chain(once(to_bool_ref(added) as &ToSql)
                                                .chain(once(flags as &ToSql))))))
            }).collect();

            // TODO: cache this for selected values of count.
            assert!(bindings_per_statement * count < max_vars, "Too many values: {} * {} >= {}", bindings_per_statement, count, max_vars);
            let values: String = repeat_values(bindings_per_statement, count);
            let s: String = if search_type == SearchType::Exact {
                format!("INSERT INTO temp.exact_searches (e0, a0, v0, value_type_tag0, added0, flags0) VALUES {}", values)
            } else {
                // This will err for duplicates within the tx.
                format!("INSERT INTO temp.inexact_searches (e0, a0, v0, value_type_tag0, added0, flags0) VALUES {}", values)
            };

            // TODO: consider ensuring we inserted the expected number of rows.
            let mut stmt = self.prepare_cached(s.as_str())?;
            stmt.execute(&params)
                .context(DbErrorKind::NonFtsInsertionIntoTempSearchTableFailed)
                .map_err(|e| e.into())
                .map(|_c| ())
        }).collect::<Result<Vec<()>>>();

        results.map(|_| ())
    }

    /// Insert search rows into temporary search tables.
    ///
    /// Eventually, the details of this approach will be captured in
    /// https://github.com/mozilla/mentat/wiki/Transacting:-entity-to-SQL-translation.
    fn insert_fts_searches<'a>(&self, entities: &'a [ReducedEntity<'a>], search_type: SearchType) -> Result<()> {
        let max_vars = self.limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER) as usize;
        let bindings_per_statement = 6;

        let mut outer_searchid = 2000;

        let chunks: itertools::IntoChunks<_> = entities.into_iter().chunks(max_vars / bindings_per_statement);

        // From string to (searchid, value_type_tag).
        let mut seen: HashMap<ValueRc<String>, (i64, i32)> = HashMap::with_capacity(entities.len());

        // We'd like to flat_map here, but it's not obvious how to flat_map across Result.
        let results: Result<Vec<()>> = chunks.into_iter().map(|chunk| -> Result<()> {
            let mut datom_count = 0;
            let mut string_count = 0;

            // We must keep these computed values somewhere to reference them later, so we can't
            // combine this map and the subsequent flat_map.
            // (e0, a0, v0, value_type_tag0, added0, flags0)
            let block: Result<Vec<(i64 /* e */,
                                   i64 /* a */,
                                   Option<ToSqlOutput<'a>> /* value */,
                                   i32 /* value_type_tag */,
                                   bool /* added0 */,
                                   u8 /* flags0 */,
                                   i64 /* searchid */)>> = chunk.map(|&(e, a, ref attribute, ref typed_value, added)| {
                match typed_value {
                    &TypedValue::String(ref rc) => {
                        datom_count += 1;
                        let entry = seen.entry(rc.clone());
                        match entry {
                            Entry::Occupied(entry) => {
                                let &(searchid, value_type_tag) = entry.get();
                                Ok((e, a, None, value_type_tag, added, attribute.flags(), searchid))
                            },
                            Entry::Vacant(entry) => {
                                outer_searchid += 1;
                                string_count += 1;

                                // Now we can represent the typed value as an SQL value.
                                let (value, value_type_tag): (ToSqlOutput, i32) = typed_value.to_sql_value_pair();
                                entry.insert((outer_searchid, value_type_tag));

                                Ok((e, a, Some(value), value_type_tag, added, attribute.flags(), outer_searchid))
                            }
                        }
                    },
                    _ => {
                        bail!(DbErrorKind::WrongTypeValueForFtsAssertion);
                    },
                }


            }).collect();
            let block = block?;

            // First, insert all fulltext string values.
            // `fts_params` reference computed values in `block`.
            let fts_params: Vec<&ToSql> =
                block.iter()
                     .filter(|&&(ref _e, ref _a, ref value, ref _value_type_tag, _added, ref _flags, ref _searchid)| {
                         value.is_some()
                     })
                     .flat_map(|&(ref _e, ref _a, ref value, ref _value_type_tag, _added, ref _flags, ref searchid)| {
                         // Avoid inner heap allocation.
                         once(value as &ToSql)
                             .chain(once(searchid as &ToSql))
                     }).collect();

            // TODO: make this maximally efficient. It's not terribly inefficient right now.
            let fts_values: String = repeat_values(2, string_count);
            let fts_s: String = format!("INSERT INTO fulltext_values_view (text, searchid) VALUES {}", fts_values);

            // TODO: consider ensuring we inserted the expected number of rows.
            let mut stmt = self.prepare_cached(fts_s.as_str())?;
            stmt.execute(&fts_params).context(DbErrorKind::FtsInsertionFailed)?;

            // Second, insert searches.
            // `params` reference computed values in `block`.
            let params: Vec<&ToSql> = block.iter().flat_map(|&(ref e, ref a, ref _value, ref value_type_tag, added, ref flags, ref searchid)| {
                // Avoid inner heap allocation.
                // TODO: extract some finite length iterator to make this less indented!
                once(e as &ToSql)
                    .chain(once(a as &ToSql)
                           .chain(once(searchid as &ToSql)
                                  .chain(once(value_type_tag as &ToSql)
                                         .chain(once(to_bool_ref(added) as &ToSql)
                                                .chain(once(flags as &ToSql))))))
            }).collect();

            // TODO: cache this for selected values of count.
            assert!(bindings_per_statement * datom_count < max_vars, "Too many values: {} * {} >= {}", bindings_per_statement, datom_count, max_vars);
            let inner = "(?, ?, (SELECT rowid FROM fulltext_values WHERE searchid = ?), ?, ?, ?)".to_string();
            // Like "(?, ?, (SELECT rowid FROM fulltext_values WHERE searchid = ?), ?, ?, ?), (?, ?, (SELECT rowid FROM fulltext_values WHERE searchid = ?), ?, ?, ?)".
            let fts_values: String = repeat(inner).take(datom_count).join(", ");
            let s: String = if search_type == SearchType::Exact {
                format!("INSERT INTO temp.exact_searches (e0, a0, v0, value_type_tag0, added0, flags0) VALUES {}", fts_values)
            } else {
                format!("INSERT INTO temp.inexact_searches (e0, a0, v0, value_type_tag0, added0, flags0) VALUES {}", fts_values)
            };

            // TODO: consider ensuring we inserted the expected number of rows.
            let mut stmt = self.prepare_cached(s.as_str())?;
            stmt.execute(&params).context(DbErrorKind::FtsInsertionIntoTempSearchTableFailed)
                .map_err(|e| e.into())
                .map(|_c| ())
        }).collect::<Result<Vec<()>>>();

        // Finally, clean up temporary searchids.
        let mut stmt = self.prepare_cached("UPDATE fulltext_values SET searchid = NULL WHERE searchid IS NOT NULL")?;
        stmt.execute(&[]).context(DbErrorKind::FtsFailedToDropSearchIds)?;
        results.map(|_| ())
    }

    fn commit_transaction(&self, tx_id: Entid) -> Result<()> {
        search(&self)?;
        insert_transaction(&self, tx_id)?;
        update_datoms(&self, tx_id)?;
        Ok(())
    }

    fn committed_metadata_assertions(&self, tx_id: Entid) -> Result<Vec<(Entid, Entid, TypedValue, bool)>> {
        // TODO: use concat! to avoid creating String instances.
        let mut stmt = self.prepare_cached(format!("SELECT e, a, v, value_type_tag, added FROM transactions WHERE tx = ? AND a IN {} ORDER BY e, a, v, value_type_tag, added", entids::METADATA_SQL_LIST.as_str()).as_str())?;
        let params = [&tx_id as &ToSql];
        let m: Result<Vec<_>> = stmt.query_and_then(&params[..], |row| -> Result<(Entid, Entid, TypedValue, bool)> {
            Ok((row.get_checked(0)?,
                row.get_checked(1)?,
                TypedValue::from_sql_value_pair(row.get_checked(2)?, row.get_checked(3)?)?,
                row.get_checked(4)?))
        })?.collect();
        m
    }
}

/// Update the current partition map materialized view.
// TODO: only update changed partitions.
pub fn update_partition_map(conn: &rusqlite::Connection, partition_map: &PartitionMap) -> Result<()> {
    let values_per_statement = 2;
    let max_vars = conn.limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER) as usize;
    let max_partitions = max_vars / values_per_statement;
    if partition_map.len() > max_partitions {
        bail!(DbErrorKind::NotYetImplemented(format!("No more than {} partitions are supported", max_partitions)));
    }

    // Like "UPDATE parts SET idx = CASE WHEN part = ? THEN ? WHEN part = ? THEN ? ELSE idx END".
    let s = format!("UPDATE parts SET idx = CASE {} ELSE idx END",
                    repeat("WHEN part = ? THEN ?").take(partition_map.len()).join(" "));

    let params: Vec<&ToSql> = partition_map.iter().flat_map(|(name, partition)| {
        once(name as &ToSql)
            .chain(once(&partition.index as &ToSql))
    }).collect();

    // TODO: only cache the latest of these statements.  Changing the set of partitions isn't
    // supported in the Clojure implementation at all, and might not be supported in Mentat soon,
    // so this is very low priority.
    let mut stmt = conn.prepare_cached(s.as_str())?;
    stmt.execute(&params[..]).context(DbErrorKind::FailedToUpdatePartitionMap)?;
    Ok(())
}

/// Update the metadata materialized views based on the given metadata report.
///
/// This updates the "entids", "idents", and "schema" materialized views, copying directly from the
/// "datoms" and "transactions" table as appropriate.
pub fn update_metadata(conn: &rusqlite::Connection, _old_schema: &Schema, new_schema: &Schema, metadata_report: &metadata::MetadataReport) -> Result<()>
{
    use metadata::AttributeAlteration::*;

    // Populate the materialized view directly from datoms (and, potentially in the future,
    // transactions).  This might generalize nicely as we expand the set of materialized views.
    // TODO: consider doing this in fewer SQLite execute() invocations.
    // TODO: use concat! to avoid creating String instances.
    if !metadata_report.idents_altered.is_empty() {
        // Idents is the materialized view of the [entid :db/ident ident] slice of datoms.
        conn.execute(format!("DELETE FROM idents").as_str(),
                     &[])?;
        conn.execute(format!("INSERT INTO idents SELECT e, a, v, value_type_tag FROM datoms WHERE a IN {}", entids::IDENTS_SQL_LIST.as_str()).as_str(),
                     &[])?;
    }


    let mut stmt = conn.prepare(format!("INSERT INTO schema SELECT e, a, v, value_type_tag FROM datoms WHERE e = ? AND a IN {}", entids::SCHEMA_SQL_LIST.as_str()).as_str())?;
    for &entid in &metadata_report.attributes_installed {
        stmt.execute(&[&entid as &ToSql])?;
    }

    let mut delete_stmt = conn.prepare(format!("DELETE FROM schema WHERE e = ? AND a IN {}", entids::SCHEMA_SQL_LIST.as_str()).as_str())?;
    let mut insert_stmt = conn.prepare(format!("INSERT INTO schema SELECT e, a, v, value_type_tag FROM datoms WHERE e = ? AND a IN {}", entids::SCHEMA_SQL_LIST.as_str()).as_str())?;
    let mut index_stmt = conn.prepare("UPDATE datoms SET index_avet = ? WHERE a = ?")?;
    let mut unique_value_stmt = conn.prepare("UPDATE datoms SET unique_value = ? WHERE a = ?")?;
    let mut cardinality_stmt = conn.prepare(r#"
SELECT EXISTS
    (SELECT 1
        FROM datoms AS left, datoms AS right
        WHERE left.a = ? AND
        left.a = right.a AND
        left.e = right.e AND
        left.v <> right.v)"#)?;

    for (&entid, alterations) in &metadata_report.attributes_altered {
        delete_stmt.execute(&[&entid as &ToSql])?;
        insert_stmt.execute(&[&entid as &ToSql])?;

        let attribute = new_schema.require_attribute_for_entid(entid)?;

        for alteration in alterations {
            match alteration {
                &Index => {
                    // This should always succeed.
                    index_stmt.execute(&[&attribute.index, &entid as &ToSql])?;
                },
                &Unique => {
                    // TODO: This can fail if there are conflicting values; give a more helpful
                    // error message in this case.
                    if unique_value_stmt.execute(&[to_bool_ref(attribute.unique.is_some()), &entid as &ToSql]).is_err() {
                        match attribute.unique {
                            Some(attribute::Unique::Value) => bail!(DbErrorKind::SchemaAlterationFailed(format!("Cannot alter schema attribute {} to be :db.unique/value", entid))),
                            Some(attribute::Unique::Identity) => bail!(DbErrorKind::SchemaAlterationFailed(format!("Cannot alter schema attribute {} to be :db.unique/identity", entid))),
                            None => unreachable!(), // This shouldn't happen, even after we support removing :db/unique.
                        }
                    }
                },
                &Cardinality => {
                    // We can always go from :db.cardinality/one to :db.cardinality many.  It's
                    // :db.cardinality/many to :db.cardinality/one that can fail.
                    //
                    // TODO: improve the failure message.  Perhaps try to mimic what Datomic says in
                    // this case?
                    if !attribute.multival {
                        let mut rows = cardinality_stmt.query(&[&entid as &ToSql])?;
                        if rows.next().is_some() {
                            bail!(DbErrorKind::SchemaAlterationFailed(format!("Cannot alter schema attribute {} to be :db.cardinality/one", entid)));
                        }
                    }
                },
                &NoHistory | &IsComponent => {
                    // There's no on disk change required for either of these.
                },
            }
        }
    }

    Ok(())
}

pub trait PartitionMapping {
    fn allocate_entid<S: ?Sized + Ord + Display>(&mut self, partition: &S) -> i64 where String: Borrow<S>;
    fn allocate_entids<S: ?Sized + Ord + Display>(&mut self, partition: &S, n: usize) -> Range<i64> where String: Borrow<S>;
    fn contains_entid(&self, entid: Entid) -> bool;
}

impl PartitionMapping for PartitionMap {
    /// Allocate a single fresh entid in the given `partition`.
    fn allocate_entid<S: ?Sized + Ord + Display>(&mut self, partition: &S) -> i64 where String: Borrow<S> {
        self.allocate_entids(partition, 1).start
    }

    /// Allocate `n` fresh entids in the given `partition`.
    fn allocate_entids<S: ?Sized + Ord + Display>(&mut self, partition: &S, n: usize) -> Range<i64> where String: Borrow<S> {
        match self.get_mut(partition) {
            Some(partition) => {
                let idx = partition.index;
                partition.index += n as i64;
                idx..partition.index
            },
            // This is a programming error.
            None => panic!("Cannot allocate entid from unknown partition: {}", partition),
        }
    }

    fn contains_entid(&self, entid: Entid) -> bool {
        self.values().any(|partition| partition.contains_entid(entid))
    }
}

#[cfg(test)]
mod tests {
    extern crate env_logger;

    use super::*;
    use bootstrap;
    use debug;
    use errors;
    use edn;
    use mentat_core::{
        HasSchema,
        Keyword,
        KnownEntid,
        attribute,
    };
    use mentat_core::intern_set::{
        InternSet,
    };
    use mentat_core::util::Either::*;
    use edn::entities::{
        OpType,
        TempId,
    };
    use rusqlite;
    use std::collections::{
        BTreeMap,
    };
    use internal_types::{
        Term,
        TermWithTempIds,
    };
    use types::TxReport;
    use tx::{
        transact_terms,
    };

    // Macro to parse a `Borrow<str>` to an `edn::Value` and assert the given `edn::Value` `matches`
    // against it.
    //
    // This is a macro only to give nice line numbers when tests fail.
    macro_rules! assert_matches {
        ( $input: expr, $expected: expr ) => {{
            // Failure to parse the expected pattern is a coding error, so we unwrap.
            let pattern_value = edn::parse::value($expected.borrow())
                .expect(format!("to be able to parse expected {}", $expected).as_str())
                .without_spans();
            assert!($input.matches(&pattern_value),
                    "Expected value:\n{}\nto match pattern:\n{}\n",
                    $input.to_pretty(120).unwrap(),
                    pattern_value.to_pretty(120).unwrap());
        }}
    }

    // Transact $input against the given $conn, expecting success or a `Result<TxReport, String>`.
    //
    // This unwraps safely and makes asserting errors pleasant.
    macro_rules! assert_transact {
        ( $conn: expr, $input: expr, $expected: expr ) => {{
            trace!("assert_transact: {}", $input);
            let result = $conn.transact($input).map_err(|e| e.to_string());
            assert_eq!(result, $expected.map_err(|e| e.to_string()));
        }};
        ( $conn: expr, $input: expr ) => {{
            trace!("assert_transact: {}", $input);
            let result = $conn.transact($input);
            assert!(result.is_ok(), "Expected Ok(_), got `{}`", result.unwrap_err());
            result.unwrap()
        }};
    }

    // A connection that doesn't try to be clever about possibly sharing its `Schema`.  Compare to
    // `mentat::Conn`.
    struct TestConn {
        sqlite: rusqlite::Connection,
        partition_map: PartitionMap,
        schema: Schema,
    }

    impl TestConn {
        fn assert_materialized_views(&self) {
            let materialized_ident_map = read_ident_map(&self.sqlite).expect("ident map");
            let materialized_attribute_map = read_attribute_map(&self.sqlite).expect("schema map");

            let materialized_schema = Schema::from_ident_map_and_attribute_map(materialized_ident_map, materialized_attribute_map).expect("schema");
            assert_eq!(materialized_schema, self.schema);
        }

        fn transact<I>(&mut self, transaction: I) -> Result<TxReport> where I: Borrow<str> {
            // Failure to parse the transaction is a coding error, so we unwrap.
            let entities = edn::parse::entities(transaction.borrow()).expect(format!("to be able to parse {} into entities", transaction.borrow()).as_str());

            let details = {
                // The block scopes the borrow of self.sqlite.
                // We're about to write, so go straight ahead and get an IMMEDIATE transaction.
                let tx = self.sqlite.transaction_with_behavior(TransactionBehavior::Immediate)?;
                // Applying the transaction can fail, so we don't unwrap.
                let details = transact(&tx, self.partition_map.clone(), &self.schema, &self.schema, NullWatcher(), entities)?;
                tx.commit()?;
                details
            };

            let (report, next_partition_map, next_schema, _watcher) = details;
            self.partition_map = next_partition_map;
            if let Some(next_schema) = next_schema {
                self.schema = next_schema;
            }

            // Verify that we've updated the materialized views during transacting.
            self.assert_materialized_views();

            Ok(report)
        }

        fn transact_simple_terms<I>(&mut self, terms: I, tempid_set: InternSet<TempId>) -> Result<TxReport> where I: IntoIterator<Item=TermWithTempIds> {
            let details = {
                // The block scopes the borrow of self.sqlite.
                // We're about to write, so go straight ahead and get an IMMEDIATE transaction.
                let tx = self.sqlite.transaction_with_behavior(TransactionBehavior::Immediate)?;
                // Applying the transaction can fail, so we don't unwrap.
                let details = transact_terms(&tx, self.partition_map.clone(), &self.schema, &self.schema, NullWatcher(), terms, tempid_set)?;
                tx.commit()?;
                details
            };

            let (report, next_partition_map, next_schema, _watcher) = details;
            self.partition_map = next_partition_map;
            if let Some(next_schema) = next_schema {
                self.schema = next_schema;
            }

            // Verify that we've updated the materialized views during transacting.
            self.assert_materialized_views();

            Ok(report)
        }

        fn last_tx_id(&self) -> Entid {
            self.partition_map.get(&":db.part/tx".to_string()).unwrap().index - 1
        }

        fn last_transaction(&self) -> edn::Value {
            debug::transactions_after(&self.sqlite, &self.schema, self.last_tx_id() - 1).expect("last_transaction").0[0].into_edn()
        }

        fn datoms(&self) -> edn::Value {
            debug::datoms_after(&self.sqlite, &self.schema, bootstrap::TX0).expect("datoms").into_edn()
        }

        fn fulltext_values(&self) -> edn::Value {
            debug::fulltext_values(&self.sqlite).expect("fulltext_values").into_edn()
        }

        fn with_sqlite(mut conn: rusqlite::Connection) -> TestConn {
            let db = ensure_current_version(&mut conn).unwrap();

            // Does not include :db/txInstant.
            let datoms = debug::datoms_after(&conn, &db.schema, 0).unwrap();
            assert_eq!(datoms.0.len(), 94);

            // Includes :db/txInstant.
            let transactions = debug::transactions_after(&conn, &db.schema, 0).unwrap();
            assert_eq!(transactions.0.len(), 1);
            assert_eq!(transactions.0[0].0.len(), 95);

            let mut parts = db.partition_map;

            // Add a fake partition to allow tests to do things like
            // [:db/add 111 :foo/bar 222]
            {
                let fake_partition = Partition { start: 100, index: 1000 };
                parts.insert(":db.part/fake".into(), fake_partition);
            }

            let test_conn = TestConn {
                sqlite: conn,
                partition_map: parts,
                schema: db.schema,
            };

            // Verify that we've created the materialized views during bootstrapping.
            test_conn.assert_materialized_views();

            test_conn
        }
    }

    impl Default for TestConn {
        fn default() -> TestConn {
            TestConn::with_sqlite(new_connection("").expect("Couldn't open in-memory db"))
        }
    }

    fn tempids(report: &TxReport) -> edn::Value {
        let mut map: BTreeMap<edn::Value, edn::Value> = BTreeMap::default();
        for (tempid, &entid) in report.tempids.iter() {
            map.insert(edn::Value::Text(tempid.clone()), edn::Value::Integer(entid));
        }
        edn::Value::Map(map)
    }

    fn run_test_add(mut conn: TestConn) {
        // Test inserting :db.cardinality/one elements.
        assert_transact!(conn, "[[:db/add 100 :db.schema/version 1]
                                 [:db/add 101 :db.schema/version 2]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db.schema/version 1 ?tx true]
                          [101 :db.schema/version 2 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                       "[[100 :db.schema/version 1]
                         [101 :db.schema/version 2]]");

        // Test inserting :db.cardinality/many elements.
        assert_transact!(conn, "[[:db/add 200 :db.schema/attribute 100]
                                 [:db/add 200 :db.schema/attribute 101]]");
        assert_matches!(conn.last_transaction(),
                        "[[200 :db.schema/attribute 100 ?tx true]
                          [200 :db.schema/attribute 101 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db.schema/version 1]
                          [101 :db.schema/version 2]
                          [200 :db.schema/attribute 100]
                          [200 :db.schema/attribute 101]]");

        // Test replacing existing :db.cardinality/one elements.
        assert_transact!(conn, "[[:db/add 100 :db.schema/version 11]
                                 [:db/add 101 :db.schema/version 22]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db.schema/version 1 ?tx false]
                          [100 :db.schema/version 11 ?tx true]
                          [101 :db.schema/version 2 ?tx false]
                          [101 :db.schema/version 22 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db.schema/version 11]
                          [101 :db.schema/version 22]
                          [200 :db.schema/attribute 100]
                          [200 :db.schema/attribute 101]]");


        // Test that asserting existing :db.cardinality/one elements doesn't change the store.
        assert_transact!(conn, "[[:db/add 100 :db.schema/version 11]
                                 [:db/add 101 :db.schema/version 22]]");
        assert_matches!(conn.last_transaction(),
                        "[[?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db.schema/version 11]
                          [101 :db.schema/version 22]
                          [200 :db.schema/attribute 100]
                          [200 :db.schema/attribute 101]]");


        // Test that asserting existing :db.cardinality/many elements doesn't change the store.
        assert_transact!(conn, "[[:db/add 200 :db.schema/attribute 100]
                                 [:db/add 200 :db.schema/attribute 101]]");
        assert_matches!(conn.last_transaction(),
                        "[[?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db.schema/version 11]
                          [101 :db.schema/version 22]
                          [200 :db.schema/attribute 100]
                          [200 :db.schema/attribute 101]]");
    }

    #[test]
    fn test_add() {
        run_test_add(TestConn::default());
    }

    #[test]
    fn test_tx_assertions() {
        let mut conn = TestConn::default();

        // Test that txInstant can be asserted.
        assert_transact!(conn, "[[:db/add (transaction-tx) :db/txInstant #inst \"2017-06-16T00:56:41.257Z\"]
                                 [:db/add 100 :db/ident :name/Ivan]
                                 [:db/add 101 :db/ident :name/Petr]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db/ident :name/Ivan ?tx true]
                          [101 :db/ident :name/Petr ?tx true]
                          [?tx :db/txInstant #inst \"2017-06-16T00:56:41.257Z\" ?tx true]]");

        // Test multiple txInstant with different values should fail.
        assert_transact!(conn, "[[:db/add (transaction-tx) :db/txInstant #inst \"2017-06-16T00:59:11.257Z\"]
                                 [:db/add (transaction-tx) :db/txInstant #inst \"2017-06-16T00:59:11.752Z\"]
                                 [:db/add 102 :db/ident :name/Vlad]]",
                         Err("schema constraint violation: cardinality conflicts:\n  CardinalityOneAddConflict { e: 268435458, a: 3, vs: {Instant(2017-06-16T00:59:11.257Z), Instant(2017-06-16T00:59:11.752Z)} }\n"));

        // Test multiple txInstants with the same value.
        assert_transact!(conn, "[[:db/add (transaction-tx) :db/txInstant #inst \"2017-06-16T00:59:11.257Z\"]
                                 [:db/add (transaction-tx) :db/txInstant #inst \"2017-06-16T00:59:11.257Z\"]
                                 [:db/add 103 :db/ident :name/Dimitri]
                                 [:db/add 104 :db/ident :name/Anton]]");
        assert_matches!(conn.last_transaction(),
                        "[[103 :db/ident :name/Dimitri ?tx true]
                          [104 :db/ident :name/Anton ?tx true]
                          [?tx :db/txInstant #inst \"2017-06-16T00:59:11.257Z\" ?tx true]]");

        // We need a few attributes to work with.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/str]
                                 [:db/add 111 :db/valueType :db.type/string]
                                 [:db/add 222 :db/ident :test/ref]
                                 [:db/add 222 :db/valueType :db.type/ref]]");

        // Test that we can assert metadata about the current transaction.
        assert_transact!(conn, "[[:db/add (transaction-tx) :test/str \"We want metadata!\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[?tx :db/txInstant ?ms ?tx true]
                          [?tx :test/str \"We want metadata!\" ?tx true]]");

        // Test that we can use (transaction-tx) as a value.
        assert_transact!(conn, "[[:db/add 333 :test/ref (transaction-tx)]]");
        assert_matches!(conn.last_transaction(),
                        "[[333 :test/ref ?tx ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // Test that we type-check properly.  In the value position, (transaction-tx) yields a ref;
        // :db/ident expects a keyword.
        assert_transact!(conn, "[[:db/add 444 :db/ident (transaction-tx)]]",
                         Err("not yet implemented: Transaction function transaction-tx produced value of type :db.type/ref but expected type :db.type/keyword"));

        // Test that we can assert metadata about the current transaction.
        assert_transact!(conn, "[[:db/add (transaction-tx) :test/ref (transaction-tx)]]");
        assert_matches!(conn.last_transaction(),
                        "[[?tx :db/txInstant ?ms ?tx true]
                          [?tx :test/ref ?tx ?tx true]]");
    }

    #[test]
    fn test_retract() {
        let mut conn = TestConn::default();

        // Insert a few :db.cardinality/one elements.
        assert_transact!(conn, "[[:db/add 100 :db.schema/version 1]
                                 [:db/add 101 :db.schema/version 2]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db.schema/version 1 ?tx true]
                          [101 :db.schema/version 2 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db.schema/version 1]
                          [101 :db.schema/version 2]]");

        // And a few :db.cardinality/many elements.
        assert_transact!(conn, "[[:db/add 200 :db.schema/attribute 100]
                                 [:db/add 200 :db.schema/attribute 101]]");
        assert_matches!(conn.last_transaction(),
                        "[[200 :db.schema/attribute 100 ?tx true]
                          [200 :db.schema/attribute 101 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db.schema/version 1]
                          [101 :db.schema/version 2]
                          [200 :db.schema/attribute 100]
                          [200 :db.schema/attribute 101]]");

        // Test that we can retract :db.cardinality/one elements.
        assert_transact!(conn, "[[:db/retract 100 :db.schema/version 1]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db.schema/version 1 ?tx false]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[101 :db.schema/version 2]
                          [200 :db.schema/attribute 100]
                          [200 :db.schema/attribute 101]]");

        // Test that we can retract :db.cardinality/many elements.
        assert_transact!(conn, "[[:db/retract 200 :db.schema/attribute 100]]");
        assert_matches!(conn.last_transaction(),
                        "[[200 :db.schema/attribute 100 ?tx false]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[101 :db.schema/version 2]
                          [200 :db.schema/attribute 101]]");

        // Verify that retracting :db.cardinality/{one,many} elements that are not present doesn't
        // change the store.
        assert_transact!(conn, "[[:db/retract 100 :db.schema/version 1]
                                 [:db/retract 200 :db.schema/attribute 100]]");
        assert_matches!(conn.last_transaction(),
                        "[[?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[101 :db.schema/version 2]
                          [200 :db.schema/attribute 101]]");
    }

    // Unique is required!
    #[test]
    fn test_upsert_issue_538() {
        let mut conn = TestConn::default();
        assert_transact!(conn, "
            [{:db/ident :person/name
              :db/valueType :db.type/string
              :db/cardinality :db.cardinality/many}
             {:db/ident :person/age
              :db/valueType :db.type/long
              :db/cardinality :db.cardinality/one}
             {:db/ident :person/email
              :db/valueType :db.type/string
              :db/unique :db.unique/identity
              :db/cardinality :db.cardinality/many}]",
              Err("bad schema assertion: :db/unique :db/unique_identity without :db/index true for entid: 65538"));
    }

    // TODO: don't use :db/ident to test upserts!
    #[test]
    fn test_upsert_vector() {
        let mut conn = TestConn::default();

        // Insert some :db.unique/identity elements.
        assert_transact!(conn, "[[:db/add 100 :db/ident :name/Ivan]
                                 [:db/add 101 :db/ident :name/Petr]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db/ident :name/Ivan ?tx true]
                          [101 :db/ident :name/Petr ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :name/Ivan]
                          [101 :db/ident :name/Petr]]");

        // Upserting two tempids to the same entid works.
        let report = assert_transact!(conn, "[[:db/add \"t1\" :db/ident :name/Ivan]
                                              [:db/add \"t1\" :db.schema/attribute 100]
                                              [:db/add \"t2\" :db/ident :name/Petr]
                                              [:db/add \"t2\" :db.schema/attribute 101]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db.schema/attribute :name/Ivan ?tx true]
                          [101 :db.schema/attribute :name/Petr ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :name/Ivan]
                          [100 :db.schema/attribute :name/Ivan]
                          [101 :db/ident :name/Petr]
                          [101 :db.schema/attribute :name/Petr]]");
        assert_matches!(tempids(&report),
                        "{\"t1\" 100
                          \"t2\" 101}");

        // Upserting a tempid works.  The ref doesn't have to exist (at this time), but we can't
        // reuse an existing ref due to :db/unique :db.unique/value.
        let report = assert_transact!(conn, "[[:db/add \"t1\" :db/ident :name/Ivan]
                                              [:db/add \"t1\" :db.schema/attribute 102]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db.schema/attribute 102 ?tx true]
                          [?true :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :name/Ivan]
                          [100 :db.schema/attribute :name/Ivan]
                          [100 :db.schema/attribute 102]
                          [101 :db/ident :name/Petr]
                          [101 :db.schema/attribute :name/Petr]]");
        assert_matches!(tempids(&report),
                        "{\"t1\" 100}");

        // A single complex upsert allocates a new entid.
        let report = assert_transact!(conn, "[[:db/add \"t1\" :db.schema/attribute \"t2\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[65536 :db.schema/attribute 65537 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{\"t1\" 65536
                          \"t2\" 65537}");

        // Conflicting upserts fail.
        assert_transact!(conn, "[[:db/add \"t1\" :db/ident :name/Ivan]
                                 [:db/add \"t1\" :db/ident :name/Petr]]",
                         Err("schema constraint violation: conflicting upserts:\n  tempid External(\"t1\") upserts to {KnownEntid(100), KnownEntid(101)}\n"));

        // The error messages of conflicting upserts gives information about all failing upserts (in a particular generation).
        assert_transact!(conn, "[[:db/add \"t2\" :db/ident :name/Grigory]
                                 [:db/add \"t2\" :db/ident :name/Petr]
                                 [:db/add \"t2\" :db/ident :name/Ivan]
                                 [:db/add \"t1\" :db/ident :name/Ivan]
                                 [:db/add \"t1\" :db/ident :name/Petr]]",
                         Err("schema constraint violation: conflicting upserts:\n  tempid External(\"t1\") upserts to {KnownEntid(100), KnownEntid(101)}\n  tempid External(\"t2\") upserts to {KnownEntid(100), KnownEntid(101)}\n"));

        // tempids in :db/retract that don't upsert fail.
        assert_transact!(conn, "[[:db/retract \"t1\" :db/ident :name/Anonymous]]",
                         Err("not yet implemented: [:db/retract ...] entity referenced tempid that did not upsert: t1"));

        // tempids in :db/retract that do upsert are retracted.  The ref given doesn't exist, so the
        // assertion will be ignored.
        let report = assert_transact!(conn, "[[:db/add \"t1\" :db/ident :name/Ivan]
                                              [:db/retract \"t1\" :db.schema/attribute 103]]");
        assert_matches!(conn.last_transaction(),
                        "[[?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{\"t1\" 100}");

        // A multistep upsert.  The upsert algorithm will first try to resolve "t1", fail, and then
        // allocate both "t1" and "t2".
        let report = assert_transact!(conn, "[[:db/add \"t1\" :db/ident :name/Josef]
                                              [:db/add \"t2\" :db.schema/attribute \"t1\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[65538 :db/ident :name/Josef ?tx true]
                          [65539 :db.schema/attribute :name/Josef ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{\"t1\" 65538
                          \"t2\" 65539}");

        // A multistep insert.  This time, we can resolve both, but we have to try "t1", succeed,
        // and then resolve "t2".
        // TODO: We can't quite test this without more schema elements.
        // conn.transact("[[:db/add \"t1\" :db/ident :name/Josef]
        //                 [:db/add \"t2\" :db/ident \"t1\"]]");
        // assert_matches!(conn.last_transaction(),
        //                 "[[65538 :db/ident :name/Josef]
        //                   [65538 :db/ident :name/Karl]
        //                   [?tx :db/txInstant ?ms ?tx true]]");
    }

    #[test]
    fn test_resolved_upserts() {
        let mut conn = TestConn::default();
        assert_transact!(conn, "[
            {:db/ident :test/id
             :db/valueType :db.type/string
             :db/unique :db.unique/identity
             :db/index true
             :db/cardinality :db.cardinality/one}
            {:db/ident :test/ref
             :db/valueType :db.type/ref
             :db/unique :db.unique/identity
             :db/index true
             :db/cardinality :db.cardinality/one}
        ]");

        // Partial data for :test/id, links via :test/ref.
        assert_transact!(conn, r#"[
            [:db/add 100 :test/id "0"]
            [:db/add 101 :test/ref 100]
            [:db/add 102 :test/ref 101]
            [:db/add 103 :test/ref 102]
        ]"#);

        // Fill in the rest of the data for :test/id, using the links of :test/ref.
        let report = assert_transact!(conn, r#"[
            {:db/id "a" :test/id "0"}
            {:db/id "b" :test/id "1" :test/ref "a"}
            {:db/id "c" :test/id "2" :test/ref "b"}
            {:db/id "d" :test/id "3" :test/ref "c"}
        ]"#);

        assert_matches!(tempids(&report), r#"{
            "a" 100
            "b" 101
            "c" 102
            "d" 103
        }"#);

        assert_matches!(conn.last_transaction(), r#"[
            [101 :test/id "1" ?tx true]
            [102 :test/id "2" ?tx true]
            [103 :test/id "3" ?tx true]
            [?tx :db/txInstant ?ms ?tx true]
        ]"#);
    }

    #[test]
    fn test_sqlite_limit() {
        let conn = new_connection("").expect("Couldn't open in-memory db");
        let initial = conn.limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER);
        // Sanity check.
        assert!(initial > 500);

        // Make sure setting works.
        conn.set_limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER, 222);
        assert_eq!(222, conn.limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER));
    }

    #[test]
    fn test_db_install() {
        let mut conn = TestConn::default();

        // We can assert a new attribute.
        assert_transact!(conn, "[[:db/add 100 :db/ident :test/ident]
                                 [:db/add 100 :db/valueType :db.type/long]
                                 [:db/add 100 :db/cardinality :db.cardinality/many]]");

        assert_eq!(conn.schema.entid_map.get(&100).cloned().unwrap(), to_namespaced_keyword(":test/ident").unwrap());
        assert_eq!(conn.schema.ident_map.get(&to_namespaced_keyword(":test/ident").unwrap()).cloned().unwrap(), 100);
        let attribute = conn.schema.attribute_for_entid(100).unwrap().clone();
        assert_eq!(attribute.value_type, ValueType::Long);
        assert_eq!(attribute.multival, true);
        assert_eq!(attribute.fulltext, false);

        assert_matches!(conn.last_transaction(),
                        "[[100 :db/ident :test/ident ?tx true]
                          [100 :db/valueType :db.type/long ?tx true]
                          [100 :db/cardinality :db.cardinality/many ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :test/ident]
                          [100 :db/valueType :db.type/long]
                          [100 :db/cardinality :db.cardinality/many]]");

        // Let's check we actually have the schema characteristics we expect.
        let attribute = conn.schema.attribute_for_entid(100).unwrap().clone();
        assert_eq!(attribute.value_type, ValueType::Long);
        assert_eq!(attribute.multival, true);
        assert_eq!(attribute.fulltext, false);

        // Let's check that we can use the freshly installed attribute.
        assert_transact!(conn, "[[:db/add 101 100 -10]
                                 [:db/add 101 :test/ident -9]]");

        assert_matches!(conn.last_transaction(),
                        "[[101 :test/ident -10 ?tx true]
                          [101 :test/ident -9 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // Cannot retract a characteristic of an installed attribute.
        assert_transact!(conn,
                         "[[:db/retract 100 :db/cardinality :db.cardinality/many]]",
                         Err("bad schema assertion: Retracting attribute 8 for entity 100 not permitted."));

        // Trying to install an attribute without a :db/ident is allowed.
        assert_transact!(conn, "[[:db/add 101 :db/valueType :db.type/long]
                                 [:db/add 101 :db/cardinality :db.cardinality/many]]");
    }

    #[test]
    fn test_db_alter() {
        let mut conn = TestConn::default();

        // Start by installing a :db.cardinality/one attribute.
        assert_transact!(conn, "[[:db/add 100 :db/ident :test/ident]
                                 [:db/add 100 :db/valueType :db.type/keyword]
                                 [:db/add 100 :db/cardinality :db.cardinality/one]]");

        // Trying to alter the :db/valueType will fail.
        assert_transact!(conn, "[[:db/add 100 :db/valueType :db.type/long]]",
                         Err("bad schema assertion: Schema alteration for existing attribute with entid 100 is not valid"));

        // But we can alter the cardinality.
        assert_transact!(conn, "[[:db/add 100 :db/cardinality :db.cardinality/many]]");

        assert_matches!(conn.last_transaction(),
                        "[[100 :db/cardinality :db.cardinality/one ?tx false]
                          [100 :db/cardinality :db.cardinality/many ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :test/ident]
                          [100 :db/valueType :db.type/keyword]
                          [100 :db/cardinality :db.cardinality/many]]");

        // Let's check we actually have the schema characteristics we expect.
        let attribute = conn.schema.attribute_for_entid(100).unwrap().clone();
        assert_eq!(attribute.value_type, ValueType::Keyword);
        assert_eq!(attribute.multival, true);
        assert_eq!(attribute.fulltext, false);

        // Let's check that we can use the freshly altered attribute's new characteristic.
        assert_transact!(conn, "[[:db/add 101 100 :test/value1]
                                 [:db/add 101 :test/ident :test/value2]]");

        assert_matches!(conn.last_transaction(),
                        "[[101 :test/ident :test/value1 ?tx true]
                          [101 :test/ident :test/value2 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
    }

    #[test]
    fn test_db_ident() {
        let mut conn = TestConn::default();

        // We can assert a new :db/ident.
        assert_transact!(conn, "[[:db/add 100 :db/ident :name/Ivan]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db/ident :name/Ivan ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :name/Ivan]]");
        assert_eq!(conn.schema.entid_map.get(&100).cloned().unwrap(), to_namespaced_keyword(":name/Ivan").unwrap());
        assert_eq!(conn.schema.ident_map.get(&to_namespaced_keyword(":name/Ivan").unwrap()).cloned().unwrap(), 100);

        // We can re-assert an existing :db/ident.
        assert_transact!(conn, "[[:db/add 100 :db/ident :name/Ivan]]");
        assert_matches!(conn.last_transaction(),
                        "[[?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :name/Ivan]]");
        assert_eq!(conn.schema.entid_map.get(&100).cloned().unwrap(), to_namespaced_keyword(":name/Ivan").unwrap());
        assert_eq!(conn.schema.ident_map.get(&to_namespaced_keyword(":name/Ivan").unwrap()).cloned().unwrap(), 100);

        // We can alter an existing :db/ident to have a new keyword.
        assert_transact!(conn, "[[:db/add :name/Ivan :db/ident :name/Petr]]");
        assert_matches!(conn.last_transaction(),
                        "[[100 :db/ident :name/Ivan ?tx false]
                          [100 :db/ident :name/Petr ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :name/Petr]]");
        // Entid map is updated.
        assert_eq!(conn.schema.entid_map.get(&100).cloned().unwrap(), to_namespaced_keyword(":name/Petr").unwrap());
        // Ident map contains the new ident.
        assert_eq!(conn.schema.ident_map.get(&to_namespaced_keyword(":name/Petr").unwrap()).cloned().unwrap(), 100);
        // Ident map no longer contains the old ident.
        assert!(conn.schema.ident_map.get(&to_namespaced_keyword(":name/Ivan").unwrap()).is_none());

        // We can re-purpose an old ident.
        assert_transact!(conn, "[[:db/add 101 :db/ident :name/Ivan]]");
        assert_matches!(conn.last_transaction(),
                        "[[101 :db/ident :name/Ivan ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :name/Petr]
                          [101 :db/ident :name/Ivan]]");
        // Entid map contains both entids.
        assert_eq!(conn.schema.entid_map.get(&100).cloned().unwrap(), to_namespaced_keyword(":name/Petr").unwrap());
        assert_eq!(conn.schema.entid_map.get(&101).cloned().unwrap(), to_namespaced_keyword(":name/Ivan").unwrap());
        // Ident map contains the new ident.
        assert_eq!(conn.schema.ident_map.get(&to_namespaced_keyword(":name/Petr").unwrap()).cloned().unwrap(), 100);
        // Ident map contains the old ident, but re-purposed to the new entid.
        assert_eq!(conn.schema.ident_map.get(&to_namespaced_keyword(":name/Ivan").unwrap()).cloned().unwrap(), 101);

        // We can retract an existing :db/ident.
        assert_transact!(conn, "[[:db/retract :name/Petr :db/ident :name/Petr]]");
        // It's really gone.
        assert!(conn.schema.entid_map.get(&100).is_none());
        assert!(conn.schema.ident_map.get(&to_namespaced_keyword(":name/Petr").unwrap()).is_none());
    }

    #[test]
    fn test_db_alter_cardinality() {
        let mut conn = TestConn::default();

        // Start by installing a :db.cardinality/one attribute.
        assert_transact!(conn, "[[:db/add 100 :db/ident :test/ident]
                                 [:db/add 100 :db/valueType :db.type/long]
                                 [:db/add 100 :db/cardinality :db.cardinality/one]]");

        assert_transact!(conn, "[[:db/add 200 :test/ident 1]]");

        // We can always go from :db.cardinality/one to :db.cardinality/many.
        assert_transact!(conn, "[[:db/add 100 :db/cardinality :db.cardinality/many]]");

        assert_transact!(conn, "[[:db/add 200 :test/ident 2]]");

        assert_matches!(conn.datoms(),
                        "[[100 :db/ident :test/ident]
                          [100 :db/valueType :db.type/long]
                          [100 :db/cardinality :db.cardinality/many]
                          [200 :test/ident 1]
                          [200 :test/ident 2]]");

        // We can't always go from :db.cardinality/many to :db.cardinality/one.
        assert_transact!(conn, "[[:db/add 100 :db/cardinality :db.cardinality/one]]",
                         // TODO: give more helpful error details.
                         Err("schema alteration failed: Cannot alter schema attribute 100 to be :db.cardinality/one"));
    }

    #[test]
    fn test_db_alter_unique_value() {
        let mut conn = TestConn::default();

        // Start by installing a :db.cardinality/one attribute.
        assert_transact!(conn, "[[:db/add 100 :db/ident :test/ident]
                                 [:db/add 100 :db/valueType :db.type/long]
                                 [:db/add 100 :db/cardinality :db.cardinality/one]]");

        assert_transact!(conn, "[[:db/add 200 :test/ident 1]
                                 [:db/add 201 :test/ident 1]]");

        // We can't always migrate to be :db.unique/value.
        assert_transact!(conn, "[[:db/add :test/ident :db/unique :db.unique/value]]",
                         // TODO: give more helpful error details.
                         Err("schema alteration failed: Cannot alter schema attribute 100 to be :db.unique/value"));

        // Not even indirectly!
        assert_transact!(conn, "[[:db/add :test/ident :db/unique :db.unique/identity]]",
                         // TODO: give more helpful error details.
                         Err("schema alteration failed: Cannot alter schema attribute 100 to be :db.unique/identity"));

        // But we can if we make sure there's no repeated [a v] pair.
        assert_transact!(conn, "[[:db/add 201 :test/ident 2]]");

        assert_transact!(conn, "[[:db/add :test/ident :db/index true]
                                 [:db/add :test/ident :db/unique :db.unique/value]
                                 [:db/add :db.part/db :db.alter/attribute 100]]");

        // We can also retract the uniqueness constraint altogether.
        assert_transact!(conn, "[[:db/retract :test/ident :db/unique :db.unique/value]]");

        // Once we've done so, the schema shows it's not unique…
        {
            let attr = conn.schema.attribute_for_ident(&Keyword::namespaced("test", "ident")).unwrap().0;
            assert_eq!(None, attr.unique);
        }

        // … and we can add more assertions with duplicate values.
        assert_transact!(conn, "[[:db/add 121 :test/ident 1]
                                 [:db/add 221 :test/ident 2]]");
    }

    /// Verify that we can't alter :db/fulltext schema characteristics at all.
    #[test]
    fn test_db_alter_fulltext() {
        let mut conn = TestConn::default();

        // Start by installing a :db/fulltext true and a :db/fulltext unset attribute.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/fulltext]
                                 [:db/add 111 :db/valueType :db.type/string]
                                 [:db/add 111 :db/unique :db.unique/identity]
                                 [:db/add 111 :db/index true]
                                 [:db/add 111 :db/fulltext true]
                                 [:db/add 222 :db/ident :test/string]
                                 [:db/add 222 :db/cardinality :db.cardinality/one]
                                 [:db/add 222 :db/valueType :db.type/string]
                                 [:db/add 222 :db/index true]]");

        assert_transact!(conn,
                         "[[:db/retract 111 :db/fulltext true]]",
                         Err("bad schema assertion: Retracting attribute 12 for entity 111 not permitted."));

        assert_transact!(conn,
                         "[[:db/add 222 :db/fulltext true]]",
                         Err("bad schema assertion: Schema alteration for existing attribute with entid 222 is not valid"));
    }

    #[test]
    fn test_db_fulltext() {
        let mut conn = TestConn::default();

        // Start by installing a few :db/fulltext true attributes.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/fulltext]
                                 [:db/add 111 :db/valueType :db.type/string]
                                 [:db/add 111 :db/unique :db.unique/identity]
                                 [:db/add 111 :db/index true]
                                 [:db/add 111 :db/fulltext true]
                                 [:db/add 222 :db/ident :test/other]
                                 [:db/add 222 :db/cardinality :db.cardinality/one]
                                 [:db/add 222 :db/valueType :db.type/string]
                                 [:db/add 222 :db/index true]
                                 [:db/add 222 :db/fulltext true]]");

        // Let's check we actually have the schema characteristics we expect.
        let fulltext = conn.schema.attribute_for_entid(111).cloned().expect(":test/fulltext");
        assert_eq!(fulltext.value_type, ValueType::String);
        assert_eq!(fulltext.fulltext, true);
        assert_eq!(fulltext.multival, false);
        assert_eq!(fulltext.unique, Some(attribute::Unique::Identity));

        let other = conn.schema.attribute_for_entid(222).cloned().expect(":test/other");
        assert_eq!(other.value_type, ValueType::String);
        assert_eq!(other.fulltext, true);
        assert_eq!(other.multival, false);
        assert_eq!(other.unique, None);

        // We can add fulltext indexed datoms.
        assert_transact!(conn, "[[:db/add 301 :test/fulltext \"test this\"]]");
        // value column is rowid into fulltext table.
        assert_matches!(conn.fulltext_values(),
                        "[[1 \"test this\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[301 :test/fulltext 1 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[111 :db/ident :test/fulltext]
                          [111 :db/valueType :db.type/string]
                          [111 :db/unique :db.unique/identity]
                          [111 :db/index true]
                          [111 :db/fulltext true]
                          [222 :db/ident :test/other]
                          [222 :db/valueType :db.type/string]
                          [222 :db/cardinality :db.cardinality/one]
                          [222 :db/index true]
                          [222 :db/fulltext true]
                          [301 :test/fulltext 1]]");

        // We can replace existing fulltext indexed datoms.
        assert_transact!(conn, "[[:db/add 301 :test/fulltext \"alternate thing\"]]");
        // value column is rowid into fulltext table.
        assert_matches!(conn.fulltext_values(),
                        "[[1 \"test this\"]
                          [2 \"alternate thing\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[301 :test/fulltext 1 ?tx false]
                          [301 :test/fulltext 2 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[111 :db/ident :test/fulltext]
                          [111 :db/valueType :db.type/string]
                          [111 :db/unique :db.unique/identity]
                          [111 :db/index true]
                          [111 :db/fulltext true]
                          [222 :db/ident :test/other]
                          [222 :db/valueType :db.type/string]
                          [222 :db/cardinality :db.cardinality/one]
                          [222 :db/index true]
                          [222 :db/fulltext true]
                          [301 :test/fulltext 2]]");

        // We can upsert keyed by fulltext indexed datoms.
        assert_transact!(conn, "[[:db/add \"t\" :test/fulltext \"alternate thing\"]
                                 [:db/add \"t\" :test/other \"other\"]]");
        // value column is rowid into fulltext table.
        assert_matches!(conn.fulltext_values(),
                        "[[1 \"test this\"]
                          [2 \"alternate thing\"]
                          [3 \"other\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[301 :test/other 3 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[111 :db/ident :test/fulltext]
                          [111 :db/valueType :db.type/string]
                          [111 :db/unique :db.unique/identity]
                          [111 :db/index true]
                          [111 :db/fulltext true]
                          [222 :db/ident :test/other]
                          [222 :db/valueType :db.type/string]
                          [222 :db/cardinality :db.cardinality/one]
                          [222 :db/index true]
                          [222 :db/fulltext true]
                          [301 :test/fulltext 2]
                          [301 :test/other 3]]");

        // We can re-use fulltext values; they won't be added to the fulltext values table twice.
        assert_transact!(conn, "[[:db/add 302 :test/other \"alternate thing\"]]");
        // value column is rowid into fulltext table.
        assert_matches!(conn.fulltext_values(),
                        "[[1 \"test this\"]
                          [2 \"alternate thing\"]
                          [3 \"other\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[302 :test/other 2 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[111 :db/ident :test/fulltext]
                          [111 :db/valueType :db.type/string]
                          [111 :db/unique :db.unique/identity]
                          [111 :db/index true]
                          [111 :db/fulltext true]
                          [222 :db/ident :test/other]
                          [222 :db/valueType :db.type/string]
                          [222 :db/cardinality :db.cardinality/one]
                          [222 :db/index true]
                          [222 :db/fulltext true]
                          [301 :test/fulltext 2]
                          [301 :test/other 3]
                          [302 :test/other 2]]");

        // We can retract fulltext indexed datoms.  The underlying fulltext value remains -- indeed,
        // it might still be in use.
        assert_transact!(conn, "[[:db/retract 302 :test/other \"alternate thing\"]]");
        // value column is rowid into fulltext table.
        assert_matches!(conn.fulltext_values(),
                        "[[1 \"test this\"]
                          [2 \"alternate thing\"]
                          [3 \"other\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[302 :test/other 2 ?tx false]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(conn.datoms(),
                        "[[111 :db/ident :test/fulltext]
                          [111 :db/valueType :db.type/string]
                          [111 :db/unique :db.unique/identity]
                          [111 :db/index true]
                          [111 :db/fulltext true]
                          [222 :db/ident :test/other]
                          [222 :db/valueType :db.type/string]
                          [222 :db/cardinality :db.cardinality/one]
                          [222 :db/index true]
                          [222 :db/fulltext true]
                          [301 :test/fulltext 2]
                          [301 :test/other 3]]");
    }

    #[test]
    fn test_lookup_refs_entity_column() {
        let mut conn = TestConn::default();

        // Start by installing a few attributes.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/unique_value]
                                 [:db/add 111 :db/valueType :db.type/string]
                                 [:db/add 111 :db/unique :db.unique/value]
                                 [:db/add 111 :db/index true]
                                 [:db/add 222 :db/ident :test/unique_identity]
                                 [:db/add 222 :db/valueType :db.type/long]
                                 [:db/add 222 :db/unique :db.unique/identity]
                                 [:db/add 222 :db/index true]
                                 [:db/add 333 :db/ident :test/not_unique]
                                 [:db/add 333 :db/cardinality :db.cardinality/one]
                                 [:db/add 333 :db/valueType :db.type/keyword]
                                 [:db/add 333 :db/index true]]");

        // And a few datoms to match against.
        assert_transact!(conn, "[[:db/add 501 :test/unique_value \"test this\"]
                                 [:db/add 502 :test/unique_value \"other\"]
                                 [:db/add 503 :test/unique_identity -10]
                                 [:db/add 504 :test/unique_identity -20]
                                 [:db/add 505 :test/not_unique :test/keyword]
                                 [:db/add 506 :test/not_unique :test/keyword]]");

        // We can resolve lookup refs in the entity column, referring to the attribute as an entid or an ident.
        assert_transact!(conn, "[[:db/add (lookup-ref :test/unique_value \"test this\") :test/not_unique :test/keyword]
                                 [:db/add (lookup-ref 111 \"other\") :test/not_unique :test/keyword]
                                 [:db/add (lookup-ref :test/unique_identity -10) :test/not_unique :test/keyword]
                                 [:db/add (lookup-ref 222 -20) :test/not_unique :test/keyword]]");
        assert_matches!(conn.last_transaction(),
                        "[[501 :test/not_unique :test/keyword ?tx true]
                          [502 :test/not_unique :test/keyword ?tx true]
                          [503 :test/not_unique :test/keyword ?tx true]
                          [504 :test/not_unique :test/keyword ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // We cannot resolve lookup refs that aren't :db/unique.
        assert_transact!(conn,
                         "[[:db/add (lookup-ref :test/not_unique :test/keyword) :test/not_unique :test/keyword]]",
                         Err("not yet implemented: Cannot resolve (lookup-ref 333 Keyword(Keyword(NamespaceableName { namespace: Some(\"test\"), name: \"keyword\" }))) with attribute that is not :db/unique"));

        // We type check the lookup ref's value against the lookup ref's attribute.
        assert_transact!(conn,
                         "[[:db/add (lookup-ref :test/unique_value :test/not_a_string) :test/not_unique :test/keyword]]",
                         Err("value \':test/not_a_string\' is not the expected Mentat value type String"));

        // Each lookup ref in the entity column must resolve
        assert_transact!(conn,
                         "[[:db/add (lookup-ref :test/unique_value \"unmatched string value\") :test/not_unique :test/keyword]]",
                         Err("no entid found for ident: couldn\'t lookup [a v]: (111, String(\"unmatched string value\"))"));
    }

    #[test]
    fn test_lookup_refs_value_column() {
        let mut conn = TestConn::default();

        // Start by installing a few attributes.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/unique_value]
                                 [:db/add 111 :db/valueType :db.type/string]
                                 [:db/add 111 :db/unique :db.unique/value]
                                 [:db/add 111 :db/index true]
                                 [:db/add 222 :db/ident :test/unique_identity]
                                 [:db/add 222 :db/valueType :db.type/long]
                                 [:db/add 222 :db/unique :db.unique/identity]
                                 [:db/add 222 :db/index true]
                                 [:db/add 333 :db/ident :test/not_unique]
                                 [:db/add 333 :db/cardinality :db.cardinality/one]
                                 [:db/add 333 :db/valueType :db.type/keyword]
                                 [:db/add 333 :db/index true]
                                 [:db/add 444 :db/ident :test/ref]
                                 [:db/add 444 :db/valueType :db.type/ref]
                                 [:db/add 444 :db/unique :db.unique/identity]
                                 [:db/add 444 :db/index true]]");

        // And a few datoms to match against.
        assert_transact!(conn, "[[:db/add 501 :test/unique_value \"test this\"]
                                 [:db/add 502 :test/unique_value \"other\"]
                                 [:db/add 503 :test/unique_identity -10]
                                 [:db/add 504 :test/unique_identity -20]
                                 [:db/add 505 :test/not_unique :test/keyword]
                                 [:db/add 506 :test/not_unique :test/keyword]]");

        // We can resolve lookup refs in the entity column, referring to the attribute as an entid or an ident.
        assert_transact!(conn, "[[:db/add 601 :test/ref (lookup-ref :test/unique_value \"test this\")]
                                 [:db/add 602 :test/ref (lookup-ref 111 \"other\")]
                                 [:db/add 603 :test/ref (lookup-ref :test/unique_identity -10)]
                                 [:db/add 604 :test/ref (lookup-ref 222 -20)]]");
        assert_matches!(conn.last_transaction(),
                        "[[601 :test/ref 501 ?tx true]
                          [602 :test/ref 502 ?tx true]
                          [603 :test/ref 503 ?tx true]
                          [604 :test/ref 504 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // We cannot resolve lookup refs for attributes that aren't :db/ref.
        assert_transact!(conn,
                         "[[:db/add \"t\" :test/not_unique (lookup-ref :test/unique_value \"test this\")]]",
                         Err("not yet implemented: Cannot resolve value lookup ref for attribute 333 that is not :db/valueType :db.type/ref"));

        // If a value column lookup ref resolves, we can upsert against it.  Here, the lookup ref
        // resolves to 501, which upserts "t" to 601.
        assert_transact!(conn, "[[:db/add \"t\" :test/ref (lookup-ref :test/unique_value \"test this\")]
                                 [:db/add \"t\" :test/not_unique :test/keyword]]");
        assert_matches!(conn.last_transaction(),
                        "[[601 :test/not_unique :test/keyword ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // Each lookup ref in the value column must resolve
        assert_transact!(conn,
                         "[[:db/add \"t\" :test/ref (lookup-ref :test/unique_value \"unmatched string value\")]]",
                         Err("no entid found for ident: couldn\'t lookup [a v]: (111, String(\"unmatched string value\"))"));
    }

    #[test]
    fn test_explode_value_lists() {
        let mut conn = TestConn::default();

        // Start by installing a few attributes.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/many]
                                 [:db/add 111 :db/valueType :db.type/long]
                                 [:db/add 111 :db/cardinality :db.cardinality/many]
                                 [:db/add 222 :db/ident :test/one]
                                 [:db/add 222 :db/valueType :db.type/long]
                                 [:db/add 222 :db/cardinality :db.cardinality/one]]");

        // Check that we can explode vectors for :db.cardinality/many attributes.
        assert_transact!(conn, "[[:db/add 501 :test/many [1]]
                                 [:db/add 502 :test/many [2 3]]
                                 [:db/add 503 :test/many [4 5 6]]]");
        assert_matches!(conn.last_transaction(),
                        "[[501 :test/many 1 ?tx true]
                          [502 :test/many 2 ?tx true]
                          [502 :test/many 3 ?tx true]
                          [503 :test/many 4 ?tx true]
                          [503 :test/many 5 ?tx true]
                          [503 :test/many 6 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // Check that we can explode nested vectors for :db.cardinality/many attributes.
        assert_transact!(conn, "[[:db/add 600 :test/many [1 [2] [[3] [4]] []]]]");
        assert_matches!(conn.last_transaction(),
                        "[[600 :test/many 1 ?tx true]
                          [600 :test/many 2 ?tx true]
                          [600 :test/many 3 ?tx true]
                          [600 :test/many 4 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // Check that we cannot explode vectors for :db.cardinality/one attributes.
        assert_transact!(conn,
                         "[[:db/add 501 :test/one [1]]]",
                         Err("not yet implemented: Cannot explode vector value for attribute 222 that is not :db.cardinality :db.cardinality/many"));
        assert_transact!(conn,
                         "[[:db/add 501 :test/one [2 3]]]",
                         Err("not yet implemented: Cannot explode vector value for attribute 222 that is not :db.cardinality :db.cardinality/many"));
    }

    #[test]
    fn test_explode_map_notation() {
        let mut conn = TestConn::default();

        // Start by installing a few attributes.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/many]
                                 [:db/add 111 :db/valueType :db.type/long]
                                 [:db/add 111 :db/cardinality :db.cardinality/many]
                                 [:db/add 222 :db/ident :test/component]
                                 [:db/add 222 :db/isComponent true]
                                 [:db/add 222 :db/valueType :db.type/ref]
                                 [:db/add 333 :db/ident :test/unique]
                                 [:db/add 333 :db/unique :db.unique/identity]
                                 [:db/add 333 :db/index true]
                                 [:db/add 333 :db/valueType :db.type/long]
                                 [:db/add 444 :db/ident :test/dangling]
                                 [:db/add 444 :db/valueType :db.type/ref]]");

        // Check that we can explode map notation without :db/id.
        let report = assert_transact!(conn, "[{:test/many 1}]");
        assert_matches!(conn.last_transaction(),
                        "[[?e :test/many 1 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can explode map notation with :db/id, as an entid, ident, and tempid.
        let report = assert_transact!(conn, "[{:db/id :db/ident :test/many 1}
                                              {:db/id 500 :test/many 2}
                                              {:db/id \"t\" :test/many 3}]");
        assert_matches!(conn.last_transaction(),
                        "[[1 :test/many 1 ?tx true]
                          [500 :test/many 2 ?tx true]
                          [?e :test/many 3 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{\"t\" 65537}");

        // Check that we can explode map notation with :db/id as a lookup-ref or tx-function.
        let report = assert_transact!(conn, "[{:db/id (lookup-ref :db/ident :db/ident) :test/many 4}
                                              {:db/id (transaction-tx) :test/many 5}]");
        assert_matches!(conn.last_transaction(),
                        "[[1 :test/many 4 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]
                          [?tx :test/many 5 ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can explode map notation with nested vector values.
        let report = assert_transact!(conn, "[{:test/many [1 2]}]");
        assert_matches!(conn.last_transaction(),
                        "[[?e :test/many 1 ?tx true]
                          [?e :test/many 2 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can explode map notation with nested maps if the attribute is
        // :db/isComponent true.
        let report = assert_transact!(conn, "[{:test/component {:test/many 1}}]");
        assert_matches!(conn.last_transaction(),
                        "[[?e :test/component ?f ?tx true]
                          [?f :test/many 1 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can explode map notation with nested maps if the inner map contains a
        // :db/unique :db.unique/identity attribute.
        let report = assert_transact!(conn, "[{:test/dangling {:test/unique 10}}]");
        assert_matches!(conn.last_transaction(),
                        "[[?e :test/dangling ?f ?tx true]
                          [?f :test/unique 10 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Verify that we can't explode map notation with nested maps if the inner map would be
        // dangling.
        assert_transact!(conn,
                         "[{:test/dangling {:test/many 11}}]",
                         Err("not yet implemented: Cannot explode nested map value that would lead to dangling entity for attribute 444"));

        // Verify that we can explode map notation with nested maps, even if the inner map would be
        // dangling, if we give a :db/id explicitly.
        assert_transact!(conn, "[{:test/dangling {:db/id \"t\" :test/many 12}}]");
    }

    #[test]
    fn test_explode_reversed_notation() {
        let mut conn = TestConn::default();

        // Start by installing a few attributes.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/many]
                                 [:db/add 111 :db/valueType :db.type/long]
                                 [:db/add 111 :db/cardinality :db.cardinality/many]
                                 [:db/add 222 :db/ident :test/component]
                                 [:db/add 222 :db/isComponent true]
                                 [:db/add 222 :db/valueType :db.type/ref]
                                 [:db/add 333 :db/ident :test/unique]
                                 [:db/add 333 :db/unique :db.unique/identity]
                                 [:db/add 333 :db/index true]
                                 [:db/add 333 :db/valueType :db.type/long]
                                 [:db/add 444 :db/ident :test/dangling]
                                 [:db/add 444 :db/valueType :db.type/ref]]");

        // Check that we can explode direct reversed notation, entids.
        let report = assert_transact!(conn, "[[:db/add 100 :test/_dangling 200]]");
        assert_matches!(conn.last_transaction(),
                        "[[200 :test/dangling 100 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can explode direct reversed notation, idents.
        let report = assert_transact!(conn, "[[:db/add :test/many :test/_dangling :test/unique]]");
        assert_matches!(conn.last_transaction(),
                        "[[333 :test/dangling :test/many ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can explode direct reversed notation, tempids.
        let report = assert_transact!(conn, "[[:db/add \"s\" :test/_dangling \"t\"]]");
        assert_matches!(conn.last_transaction(),
                        "[[65537 :test/dangling 65536 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        // This is implementation specific, but it should be deterministic.
        assert_matches!(tempids(&report),
                        "{\"s\" 65536
                          \"t\" 65537}");

        // Check that we can explode reversed notation in map notation without :db/id.
        let report = assert_transact!(conn, "[{:test/_dangling 501}
                                              {:test/_dangling :test/many}
                                              {:test/_dangling \"t\"}]");
        assert_matches!(conn.last_transaction(),
                        "[[111 :test/dangling ?e1 ?tx true]
                          [501 :test/dangling ?e2 ?tx true]
                          [65538 :test/dangling ?e3 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{\"t\" 65538}");

        // Check that we can explode reversed notation in map notation with :db/id, entid.
        let report = assert_transact!(conn, "[{:db/id 600 :test/_dangling 601}]");
        assert_matches!(conn.last_transaction(),
                        "[[601 :test/dangling 600 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can explode reversed notation in map notation with :db/id, ident.
        let report = assert_transact!(conn, "[{:db/id :test/component :test/_dangling :test/component}]");
        assert_matches!(conn.last_transaction(),
                        "[[222 :test/dangling :test/component ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can explode reversed notation in map notation with :db/id, tempid.
        let report = assert_transact!(conn, "[{:db/id \"s\" :test/_dangling \"t\"}]");
        assert_matches!(conn.last_transaction(),
                        "[[65543 :test/dangling 65542 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        // This is implementation specific, but it should be deterministic.
        assert_matches!(tempids(&report),
                        "{\"s\" 65542
                          \"t\" 65543}");

        // Check that we can use the same attribute in both forward and backward form in the same
        // transaction.
        let report = assert_transact!(conn, "[[:db/add 888 :test/dangling 889]
                                              [:db/add 888 :test/_dangling 889]]");
        assert_matches!(conn.last_transaction(),
                        "[[888 :test/dangling 889 ?tx true]
                          [889 :test/dangling 888 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

        // Check that we can use the same attribute in both forward and backward form in the same
        // transaction in map notation.
        let report = assert_transact!(conn, "[{:db/id 998 :test/dangling 999 :test/_dangling 999}]");
        assert_matches!(conn.last_transaction(),
                        "[[998 :test/dangling 999 ?tx true]
                          [999 :test/dangling 998 ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");
        assert_matches!(tempids(&report),
                        "{}");

    }

    #[test]
    fn test_explode_reversed_notation_errors() {
        let mut conn = TestConn::default();

        // Start by installing a few attributes.
        assert_transact!(conn, "[[:db/add 111 :db/ident :test/many]
                                 [:db/add 111 :db/valueType :db.type/long]
                                 [:db/add 111 :db/cardinality :db.cardinality/many]
                                 [:db/add 222 :db/ident :test/component]
                                 [:db/add 222 :db/isComponent true]
                                 [:db/add 222 :db/valueType :db.type/ref]
                                 [:db/add 333 :db/ident :test/unique]
                                 [:db/add 333 :db/unique :db.unique/identity]
                                 [:db/add 333 :db/index true]
                                 [:db/add 333 :db/valueType :db.type/long]
                                 [:db/add 444 :db/ident :test/dangling]
                                 [:db/add 444 :db/valueType :db.type/ref]]");

        // `tx-parser` should fail to parse direct reverse notation with nested value maps and
        // nested value vectors, so we only test things that "get through" to the map notation
        // dynamic processor here.

        // Verify that we can't explode reverse notation in map notation with nested value maps.
        assert_transact!(conn,
                         "[{:test/_dangling {:test/many 14}}]",
                         Err("not yet implemented: Cannot explode map notation value in :attr/_reversed notation for attribute 444"));

        // Verify that we can't explode reverse notation in map notation with nested value vectors.
        assert_transact!(conn,
                         "[{:test/_dangling [:test/many]}]",
                         Err("not yet implemented: Cannot explode vector value in :attr/_reversed notation for attribute 444"));

        // Verify that we can't use reverse notation with non-:db.type/ref attributes.
        assert_transact!(conn,
                         "[{:test/_unique 500}]",
                         Err("not yet implemented: Cannot use :attr/_reversed notation for attribute 333 that is not :db/valueType :db.type/ref"));

        // Verify that we can't use reverse notation with unrecognized attributes.
        assert_transact!(conn,
                         "[{:test/_unknown 500}]",
                         Err("no entid found for ident: :test/unknown")); // TODO: make this error reference the original :test/_unknown.

        // Verify that we can't use reverse notation with bad value types: here, an unknown keyword
        // that can't be coerced to a ref.
        assert_transact!(conn,
                         "[{:test/_dangling :test/unknown}]",
                         Err("no entid found for ident: :test/unknown"));
        // And here, a float.
        assert_transact!(conn,
                         "[{:test/_dangling 1.23}]",
                         Err("value \'1.23\' is not the expected Mentat value type Ref"));
    }

    #[test]
    fn test_cardinality_one_violation_existing_entity() {
        let mut conn = TestConn::default();

        // Start by installing a few attributes.
        assert_transact!(conn, r#"[
            [:db/add 111 :db/ident :test/one]
            [:db/add 111 :db/valueType :db.type/long]
            [:db/add 111 :db/cardinality :db.cardinality/one]
            [:db/add 112 :db/ident :test/unique]
            [:db/add 112 :db/index true]
            [:db/add 112 :db/valueType :db.type/string]
            [:db/add 112 :db/cardinality :db.cardinality/one]
            [:db/add 112 :db/unique :db.unique/identity]
        ]"#);

        assert_transact!(conn, r#"[
            [:db/add "foo" :test/unique "x"]
        ]"#);

        // You can try to assert two values for the same entity and attribute,
        // but you'll get an error.
        assert_transact!(conn, r#"[
            [:db/add "foo" :test/unique "x"]
            [:db/add "foo" :test/one 123]
            [:db/add "bar" :test/unique "x"]
            [:db/add "bar" :test/one 124]
        ]"#,
        // This is implementation specific (due to the allocated entid), but it should be deterministic.
        Err("schema constraint violation: cardinality conflicts:\n  CardinalityOneAddConflict { e: 65536, a: 111, vs: {Long(123), Long(124)} }\n"));

        // It also fails for map notation.
        assert_transact!(conn, r#"[
            {:test/unique "x", :test/one 123}
            {:test/unique "x", :test/one 124}
        ]"#,
        // This is implementation specific (due to the allocated entid), but it should be deterministic.
        Err("schema constraint violation: cardinality conflicts:\n  CardinalityOneAddConflict { e: 65536, a: 111, vs: {Long(123), Long(124)} }\n"));
    }

    #[test]
    fn test_conflicting_upserts() {
        let mut conn = TestConn::default();

        assert_transact!(conn, r#"[
            {:db/ident :page/id :db/valueType :db.type/string :db/index true :db/unique :db.unique/identity}
            {:db/ident :page/ref :db/valueType :db.type/ref :db/index true :db/unique :db.unique/identity}
            {:db/ident :page/title :db/valueType :db.type/string :db/cardinality :db.cardinality/many}
        ]"#);

        // Let's test some conflicting upserts.  First, valid data to work with -- note self references.
        assert_transact!(conn, r#"[
            [:db/add 111 :page/id "1"]
            [:db/add 111 :page/ref 111]
            [:db/add 222 :page/id "2"]
            [:db/add 222 :page/ref 222]
        ]"#);

        // Now valid upserts.  Note the references are valid.
        let report = assert_transact!(conn, r#"[
            [:db/add "a" :page/id "1"]
            [:db/add "a" :page/ref "a"]
            [:db/add "b" :page/id "2"]
            [:db/add "b" :page/ref "b"]
        ]"#);
        assert_matches!(tempids(&report),
                        "{\"a\" 111
                          \"b\" 222}");

        // Now conflicting upserts.  Note the references are reversed.  This example is interesting
        // because the first round `UpsertE` instances upsert, and this resolves all of the tempids
        // in the `UpsertEV` instances.  However, those `UpsertEV` instances lead to conflicting
        // upserts!  This tests that we don't resolve too far, giving a chance for those upserts to
        // fail.  This error message is crossing generations, although it's not reflected in the
        // error data structure.
        assert_transact!(conn, r#"[
            [:db/add "a" :page/id "1"]
            [:db/add "a" :page/ref "b"]
            [:db/add "b" :page/id "2"]
            [:db/add "b" :page/ref "a"]
        ]"#,
        Err("schema constraint violation: conflicting upserts:\n  tempid External(\"a\") upserts to {KnownEntid(111), KnownEntid(222)}\n  tempid External(\"b\") upserts to {KnownEntid(111), KnownEntid(222)}\n"));

        // Here's a case where the upsert is not resolved, just allocated, but leads to conflicting
        // cardinality one datoms.
        assert_transact!(conn, r#"[
            [:db/add "x" :page/ref 333]
            [:db/add "x" :page/ref 444]
        ]"#,
        Err("schema constraint violation: cardinality conflicts:\n  CardinalityOneAddConflict { e: 65539, a: 65537, vs: {Ref(333), Ref(444)} }\n"));
    }

    #[test]
    fn test_upsert_issue_532() {
        let mut conn = TestConn::default();

        assert_transact!(conn, r#"[
            {:db/ident :page/id :db/valueType :db.type/string :db/index true :db/unique :db.unique/identity}
            {:db/ident :page/ref :db/valueType :db.type/ref :db/index true :db/unique :db.unique/identity}
            {:db/ident :page/title :db/valueType :db.type/string :db/cardinality :db.cardinality/many}
        ]"#);

        // Observe that "foo" and "zot" upsert to the same entid, and that doesn't cause a
        // cardinality conflict, because we treat the input with set semantics and accept
        // duplicate datoms.
        let report = assert_transact!(conn, r#"[
            [:db/add "bar" :page/id "z"]
            [:db/add "foo" :page/ref "bar"]
            [:db/add "foo" :page/title "x"]
            [:db/add "zot" :page/ref "bar"]
            [:db/add "zot" :db/ident :other/ident]
        ]"#);
        assert_matches!(tempids(&report),
                        "{\"bar\" ?b
                          \"foo\" ?f
                          \"zot\" ?f}");
        assert_matches!(conn.last_transaction(),
                        "[[?b :page/id \"z\" ?tx true]
                          [?f :db/ident :other/ident ?tx true]
                          [?f :page/ref ?b ?tx true]
                          [?f :page/title \"x\" ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        let report = assert_transact!(conn, r#"[
            [:db/add "foo" :page/id "x"]
            [:db/add "foo" :page/title "x"]
            [:db/add "bar" :page/id "x"]
            [:db/add "bar" :page/title "y"]
        ]"#);
        assert_matches!(tempids(&report),
                        "{\"foo\" ?e
                          \"bar\" ?e}");

        // One entity, two page titles.
        assert_matches!(conn.last_transaction(),
                        "[[?e :page/id \"x\" ?tx true]
                          [?e :page/title \"x\" ?tx true]
                          [?e :page/title \"y\" ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // Here, "foo", "bar", and "baz", all refer to the same reference, but none of them actually
        // upsert to existing entities.
        let report = assert_transact!(conn, r#"[
            [:db/add "foo" :page/id "id"]
            [:db/add "bar" :db/ident :bar/bar]
            {:db/id "baz" :page/id "id" :db/ident :bar/bar}
        ]"#);
        assert_matches!(tempids(&report),
                        "{\"foo\" ?e
                          \"bar\" ?e
                          \"baz\" ?e}");

        assert_matches!(conn.last_transaction(),
                        "[[?e :db/ident :bar/bar ?tx true]
                          [?e :page/id \"id\" ?tx true]
                          [?tx :db/txInstant ?ms ?tx true]]");

        // If we do it again, everything resolves to the same IDs.
        let report = assert_transact!(conn, r#"[
            [:db/add "foo" :page/id "id"]
            [:db/add "bar" :db/ident :bar/bar]
            {:db/id "baz" :page/id "id" :db/ident :bar/bar}
        ]"#);
        assert_matches!(tempids(&report),
                        "{\"foo\" ?e
                          \"bar\" ?e
                          \"baz\" ?e}");

        assert_matches!(conn.last_transaction(),
                        "[[?tx :db/txInstant ?ms ?tx true]]");
    }

    #[test]
    fn test_term_typechecking_issue_663() {
        // The builder interfaces provide untrusted `Term` instances to the transactor, bypassing
        // the typechecking layers invoked in the schema-aware coercion from `edn::Value` into
        // `TypedValue`.  Typechecking now happens lower in the stack (as well as higher in the
        // stack) so we shouldn't be able to insert bad data into the store.

        let mut conn = TestConn::default();

        let mut terms = vec![];

        terms.push(Term::AddOrRetract(OpType::Add, Left(KnownEntid(200)), entids::DB_IDENT, Left(TypedValue::typed_string("test"))));
        terms.push(Term::AddOrRetract(OpType::Retract, Left(KnownEntid(100)), entids::DB_TX_INSTANT, Left(TypedValue::Long(-1))));

        let report = conn.transact_simple_terms(terms, InternSet::new());

        match report.err().map(|e| e.kind()) {
            Some(DbErrorKind::SchemaConstraintViolation(errors::SchemaConstraintViolation::TypeDisagreements { ref conflicting_datoms })) => {
                let mut map = BTreeMap::default();
                map.insert((100, entids::DB_TX_INSTANT, TypedValue::Long(-1)), ValueType::Instant);
                map.insert((200, entids::DB_IDENT, TypedValue::typed_string("test")), ValueType::Keyword);

                assert_eq!(conflicting_datoms, &map);
            },
            x => panic!("expected schema constraint violation, got {:?}", x),
        }
    }

    #[test]
    fn test_cardinality_constraints() {
        let mut conn = TestConn::default();

        assert_transact!(conn, r#"[
            {:db/id 200 :db/ident :test/one :db/valueType :db.type/long :db/cardinality :db.cardinality/one}
            {:db/id 201 :db/ident :test/many :db/valueType :db.type/long :db/cardinality :db.cardinality/many}
        ]"#);

        // Can add the same datom multiple times for an attribute, regardless of cardinality.
        assert_transact!(conn, r#"[
            [:db/add 100 :test/one 1]
            [:db/add 100 :test/one 1]
            [:db/add 100 :test/many 2]
            [:db/add 100 :test/many 2]
        ]"#);

        // Can retract the same datom multiple times for an attribute, regardless of cardinality.
        assert_transact!(conn, r#"[
            [:db/retract 100 :test/one 1]
            [:db/retract 100 :test/one 1]
            [:db/retract 100 :test/many 2]
            [:db/retract 100 :test/many 2]
        ]"#);

        // Can't transact multiple datoms for a cardinality one attribute.
        assert_transact!(conn, r#"[
            [:db/add 100 :test/one 3]
            [:db/add 100 :test/one 4]
        ]"#,
        Err("schema constraint violation: cardinality conflicts:\n  CardinalityOneAddConflict { e: 100, a: 200, vs: {Long(3), Long(4)} }\n"));

        // Can transact multiple datoms for a cardinality many attribute.
        assert_transact!(conn, r#"[
            [:db/add 100 :test/many 5]
            [:db/add 100 :test/many 6]
        ]"#);

        // Can't add and retract the same datom for an attribute, regardless of cardinality.
        assert_transact!(conn, r#"[
            [:db/add     100 :test/one 7]
            [:db/retract 100 :test/one 7]
            [:db/add     100 :test/many 8]
            [:db/retract 100 :test/many 8]
        ]"#,
        Err("schema constraint violation: cardinality conflicts:\n  AddRetractConflict { e: 100, a: 200, vs: {Long(7)} }\n  AddRetractConflict { e: 100, a: 201, vs: {Long(8)} }\n"));
    }

    #[test]
    #[cfg(feature = "sqlcipher")]
    fn test_sqlcipher_openable() {
        let secret_key = "key";
        let sqlite = new_connection_with_key("../fixtures/v1encrypted.db", secret_key).expect("Failed to find test DB");
        sqlite.query_row("SELECT COUNT(*) FROM sqlite_master", &[], |row| row.get::<_, i64>(0))
            .expect("Failed to execute sql query on encrypted DB");
    }

    #[cfg(feature = "sqlcipher")]
    fn test_open_fail<F>(opener: F) where F: FnOnce() -> rusqlite::Result<rusqlite::Connection> {
        let err = opener().expect_err("Should fail to open encrypted DB");
        match err {
            rusqlite::Error::SqliteFailure(err, ..) => {
                assert_eq!(err.extended_code, 26, "Should get error code 26 (not a database).");
            },
            err => {
                panic!("Wrong error type! {}", err);
            }
        }
    }

    #[test]
    #[cfg(feature = "sqlcipher")]
    fn test_sqlcipher_requires_key() {
        // Don't use a key.
        test_open_fail(|| new_connection("../fixtures/v1encrypted.db"));
    }

    #[test]
    #[cfg(feature = "sqlcipher")]
    fn test_sqlcipher_requires_correct_key() {
        // Use a key, but the wrong one.
        test_open_fail(|| new_connection_with_key("../fixtures/v1encrypted.db", "wrong key"));
    }

    #[test]
    #[cfg(feature = "sqlcipher")]
    fn test_sqlcipher_some_transactions() {
        let sqlite = new_connection_with_key("", "hunter2").expect("Failed to create encrypted connection");
        // Run a basic test as a sanity check.
        run_test_add(TestConn::with_sqlite(sqlite));
    }
}