1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use once_cell::sync::Lazy;
use std::borrow::Borrow;
use std::cell::RefCell;
use std::collections::{BTreeSet, HashMap, HashSet};
use std::fmt::Debug;

use anyhow::{Context, Result};
use askama::Template;
use camino::Utf8Path;
use heck::{ToLowerCamelCase, ToShoutySnakeCase, ToUpperCamelCase};
use serde::{Deserialize, Serialize};

use super::Bindings;
use crate::backend::TemplateExpression;
use crate::bindings::swift;
use crate::interface::*;
use crate::{BindingGenerator, BindingsConfig};

mod callback_interface;
mod compounds;
mod custom;
mod enum_;
mod external;
mod miscellany;
mod object;
mod primitives;
mod record;

pub struct SwiftBindingGenerator;
impl BindingGenerator for SwiftBindingGenerator {
    type Config = Config;

    fn write_bindings(
        &self,
        ci: &ComponentInterface,
        config: &Config,
        out_dir: &Utf8Path,
        try_format_code: bool,
    ) -> Result<()> {
        swift::write_bindings(config, ci, out_dir, try_format_code)
    }

    fn check_library_path(
        &self,
        _library_path: &Utf8Path,
        _cdylib_name: Option<&str>,
    ) -> Result<()> {
        Ok(())
    }
}

/// A trait tor the implementation.
trait CodeType: Debug {
    /// The language specific label used to reference this type. This will be used in
    /// method signatures and property declarations.
    fn type_label(&self) -> String;

    /// A representation of this type label that can be used as part of another
    /// identifier. e.g. `read_foo()`, or `FooInternals`.
    ///
    /// This is especially useful when creating specialized objects or methods to deal
    /// with this type only.
    fn canonical_name(&self) -> String {
        self.type_label()
    }

    fn literal(&self, _literal: &Literal) -> String {
        unimplemented!("Unimplemented for {}", self.type_label())
    }

    /// Name of the FfiConverter
    ///
    /// This is the object that contains the lower, write, lift, and read methods for this type.
    fn ffi_converter_name(&self) -> String {
        format!("FfiConverter{}", self.canonical_name())
    }

    // XXX - the below should be removed and replace with the ffi_converter_name reference in the template.
    /// An expression for lowering a value into something we can pass over the FFI.
    fn lower(&self) -> String {
        format!("{}.lower", self.ffi_converter_name())
    }

    /// An expression for writing a value into a byte buffer.
    fn write(&self) -> String {
        format!("{}.write", self.ffi_converter_name())
    }

    /// An expression for lifting a value from something we received over the FFI.
    fn lift(&self) -> String {
        format!("{}.lift", self.ffi_converter_name())
    }

    /// An expression for reading a value from a byte buffer.
    fn read(&self) -> String {
        format!("{}.read", self.ffi_converter_name())
    }

    /// A list of imports that are needed if this type is in use.
    /// Classes are imported exactly once.
    fn imports(&self) -> Option<Vec<String>> {
        None
    }

    /// Function to run at startup
    fn initialization_fn(&self) -> Option<String> {
        None
    }
}

/// From <https://docs.swift.org/swift-book/documentation/the-swift-programming-language/lexicalstructure/#Keywords-and-Punctuation>
static KEYWORDS: Lazy<HashSet<String>> = Lazy::new(|| {
    [
        // Keywords used in declarations:
        "associatedtype",
        "class",
        "deinit",
        "enum",
        "extension",
        "fileprivate",
        "func",
        "import",
        "init",
        "inout",
        "internal",
        "let",
        "open",
        "operator",
        "private",
        "precedencegroup",
        "protocol",
        "public",
        "rethrows",
        "static",
        "struct",
        "subscript",
        "typealias",
        "var",
        // Keywords used in statements:
        "break",
        "case",
        "catch",
        "continue",
        "default",
        "defer",
        "do",
        "else",
        "fallthrough",
        "for",
        "guard",
        "if",
        "in",
        "repeat",
        "return",
        "throw",
        "switch",
        "where",
        "while",
        // Keywords used in expressions and types:
        "Any",
        "as",
        "await",
        "catch",
        "false",
        "is",
        "nil",
        "rethrows",
        "self",
        "Self",
        "super",
        "throw",
        "throws",
        "true",
        "try",
    ]
    .iter()
    .map(ToString::to_string)
    .collect::<HashSet<_>>()
});

/// Quote a name for use in a context where keywords must be quoted
pub fn quote_general_keyword(nm: String) -> String {
    if KEYWORDS.contains(&nm) {
        format!("`{nm}`")
    } else {
        nm
    }
}

/// Per <https://docs.swift.org/swift-book/documentation/the-swift-programming-language/lexicalstructure/#Keywords-and-Punctuation> subset of keywords which need quoting in arg context.
static ARG_KEYWORDS: Lazy<HashSet<String>> = Lazy::new(|| {
    ["inout", "var", "let"]
        .iter()
        .map(ToString::to_string)
        .collect::<HashSet<_>>()
});

/// Quote a name for use in arg context where fewer keywords must be quoted
pub fn quote_arg_keyword(nm: String) -> String {
    if ARG_KEYWORDS.contains(&nm) {
        format!("`{nm}`")
    } else {
        nm
    }
}

/// Config options for the caller to customize the generated Swift.
///
/// Note that this can only be used to control details of the Swift *that do not affect the underlying component*,
/// since the details of the underlying component are entirely determined by the `ComponentInterface`.
#[derive(Debug, Clone, Default, Serialize, Deserialize)]
pub struct Config {
    cdylib_name: Option<String>,
    module_name: Option<String>,
    ffi_module_name: Option<String>,
    ffi_module_filename: Option<String>,
    generate_module_map: Option<bool>,
    omit_argument_labels: Option<bool>,
    generate_immutable_records: Option<bool>,
    experimental_sendable_value_types: Option<bool>,
    #[serde(default)]
    custom_types: HashMap<String, CustomTypeConfig>,
}

#[derive(Debug, Default, Clone, Serialize, Deserialize)]
pub struct CustomTypeConfig {
    imports: Option<Vec<String>>,
    type_name: Option<String>,
    into_custom: TemplateExpression,
    from_custom: TemplateExpression,
}

impl Config {
    /// The name of the Swift module containing the high-level foreign-language bindings.
    pub fn module_name(&self) -> String {
        match self.module_name.as_ref() {
            Some(name) => name.clone(),
            None => "uniffi".into(),
        }
    }

    /// The name of the lower-level C module containing the FFI declarations.
    pub fn ffi_module_name(&self) -> String {
        match self.ffi_module_name.as_ref() {
            Some(name) => name.clone(),
            None => format!("{}FFI", self.module_name()),
        }
    }

    /// The filename stem for the lower-level C module containing the FFI declarations.
    pub fn ffi_module_filename(&self) -> String {
        match self.ffi_module_filename.as_ref() {
            Some(name) => name.clone(),
            None => self.ffi_module_name(),
        }
    }

    /// The name of the `.modulemap` file for the lower-level C module with FFI declarations.
    pub fn modulemap_filename(&self) -> String {
        format!("{}.modulemap", self.ffi_module_filename())
    }

    /// The name of the `.h` file for the lower-level C module with FFI declarations.
    pub fn header_filename(&self) -> String {
        format!("{}.h", self.ffi_module_filename())
    }

    /// The name of the compiled Rust library containing the FFI implementation.
    pub fn cdylib_name(&self) -> String {
        if let Some(cdylib_name) = &self.cdylib_name {
            cdylib_name.clone()
        } else {
            "uniffi".into()
        }
    }

    /// Whether to generate a `.modulemap` file for the lower-level C module with FFI declarations.
    pub fn generate_module_map(&self) -> bool {
        self.generate_module_map.unwrap_or(true)
    }

    /// Whether to omit argument labels in Swift function definitions.
    pub fn omit_argument_labels(&self) -> bool {
        self.omit_argument_labels.unwrap_or(false)
    }

    /// Whether to generate immutable records (`let` instead of `var`)
    pub fn generate_immutable_records(&self) -> bool {
        self.generate_immutable_records.unwrap_or(false)
    }

    /// Whether to mark value types as 'Sendable'
    pub fn experimental_sendable_value_types(&self) -> bool {
        self.experimental_sendable_value_types.unwrap_or(false)
    }
}

impl BindingsConfig for Config {
    fn update_from_ci(&mut self, ci: &ComponentInterface) {
        self.module_name
            .get_or_insert_with(|| ci.namespace().into());
        self.cdylib_name
            .get_or_insert_with(|| format!("uniffi_{}", ci.namespace()));
    }

    fn update_from_cdylib_name(&mut self, cdylib_name: &str) {
        self.cdylib_name
            .get_or_insert_with(|| cdylib_name.to_string());
    }

    fn update_from_dependency_configs(&mut self, _config_map: HashMap<&str, &Self>) {}
}

/// Generate UniFFI component bindings for Swift, as strings in memory.
///
pub fn generate_bindings(config: &Config, ci: &ComponentInterface) -> Result<Bindings> {
    let header = BridgingHeader::new(config, ci)
        .render()
        .context("failed to render Swift bridging header")?;
    let library = SwiftWrapper::new(config.clone(), ci)
        .render()
        .context("failed to render Swift library")?;
    let modulemap = if config.generate_module_map() {
        Some(
            ModuleMap::new(config, ci)
                .render()
                .context("failed to render Swift modulemap")?,
        )
    } else {
        None
    };
    Ok(Bindings {
        library,
        header,
        modulemap,
    })
}

/// Renders Swift helper code for all types
///
/// This template is a bit different than others in that it stores internal state from the render
/// process.  Make sure to only call `render()` once.
#[derive(Template)]
#[template(syntax = "swift", escape = "none", path = "Types.swift")]
pub struct TypeRenderer<'a> {
    config: &'a Config,
    ci: &'a ComponentInterface,
    // Track included modules for the `include_once()` macro
    include_once_names: RefCell<HashSet<String>>,
    // Track imports added with the `add_import()` macro
    imports: RefCell<BTreeSet<String>>,
}

impl<'a> TypeRenderer<'a> {
    fn new(config: &'a Config, ci: &'a ComponentInterface) -> Self {
        Self {
            config,
            ci,
            include_once_names: RefCell::new(HashSet::new()),
            imports: RefCell::new(BTreeSet::new()),
        }
    }

    // The following methods are used by the `Types.swift` macros.

    // Helper for the including a template, but only once.
    //
    // The first time this is called with a name it will return true, indicating that we should
    // include the template.  Subsequent calls will return false.
    fn include_once_check(&self, name: &str) -> bool {
        self.include_once_names
            .borrow_mut()
            .insert(name.to_string())
    }

    // Helper to add an import statement
    //
    // Call this inside your template to cause an import statement to be added at the top of the
    // file.  Imports will be sorted and de-deuped.
    //
    // Returns an empty string so that it can be used inside an askama `{{ }}` block.
    fn add_import(&self, name: &str) -> &str {
        self.imports.borrow_mut().insert(name.to_owned());
        ""
    }
}

/// Template for generating the `.h` file that defines the low-level C FFI.
///
/// This file defines only the low-level structs and functions that are exposed
/// by the compiled Rust code. It gets wrapped into a higher-level API by the
/// code from [`SwiftWrapper`].
#[derive(Template)]
#[template(syntax = "c", escape = "none", path = "BridgingHeaderTemplate.h")]
pub struct BridgingHeader<'config, 'ci> {
    _config: &'config Config,
    ci: &'ci ComponentInterface,
}

impl<'config, 'ci> BridgingHeader<'config, 'ci> {
    pub fn new(config: &'config Config, ci: &'ci ComponentInterface) -> Self {
        Self {
            _config: config,
            ci,
        }
    }
}

/// Template for generating the `.modulemap` file that exposes the low-level C FFI.
///
/// This file defines how the low-level C FFI from [`BridgingHeader`] gets exposed
/// as a Swift module that can be called by other Swift code. In our case, its only
/// job is to define the *name* of the Swift module that will contain the FFI functions
/// so that it can be imported by the higher-level code in from [`SwiftWrapper`].
#[derive(Template)]
#[template(syntax = "c", escape = "none", path = "ModuleMapTemplate.modulemap")]
pub struct ModuleMap<'config, 'ci> {
    config: &'config Config,
    _ci: &'ci ComponentInterface,
}

impl<'config, 'ci> ModuleMap<'config, 'ci> {
    pub fn new(config: &'config Config, _ci: &'ci ComponentInterface) -> Self {
        Self { config, _ci }
    }
}

#[derive(Template)]
#[template(syntax = "swift", escape = "none", path = "wrapper.swift")]
pub struct SwiftWrapper<'a> {
    config: Config,
    ci: &'a ComponentInterface,
    type_helper_code: String,
    type_imports: BTreeSet<String>,
}
impl<'a> SwiftWrapper<'a> {
    pub fn new(config: Config, ci: &'a ComponentInterface) -> Self {
        let type_renderer = TypeRenderer::new(&config, ci);
        let type_helper_code = type_renderer.render().unwrap();
        let type_imports = type_renderer.imports.into_inner();
        Self {
            config,
            ci,
            type_helper_code,
            type_imports,
        }
    }

    pub fn imports(&self) -> Vec<String> {
        self.type_imports.iter().cloned().collect()
    }

    pub fn initialization_fns(&self) -> Vec<String> {
        self.ci
            .iter_types()
            .map(|t| SwiftCodeOracle.find(t))
            .filter_map(|ct| ct.initialization_fn())
            .collect()
    }
}

#[derive(Clone)]
pub struct SwiftCodeOracle;

impl SwiftCodeOracle {
    // Map `Type` instances to a `Box<dyn CodeType>` for that type.
    //
    // There is a companion match in `templates/Types.swift` which performs a similar function for the
    // template code.
    //
    //   - When adding additional types here, make sure to also add a match arm to the `Types.swift` template.
    //   - To keep things manageable, let's try to limit ourselves to these 2 mega-matches
    fn create_code_type(&self, type_: Type) -> Box<dyn CodeType> {
        match type_ {
            Type::UInt8 => Box::new(primitives::UInt8CodeType),
            Type::Int8 => Box::new(primitives::Int8CodeType),
            Type::UInt16 => Box::new(primitives::UInt16CodeType),
            Type::Int16 => Box::new(primitives::Int16CodeType),
            Type::UInt32 => Box::new(primitives::UInt32CodeType),
            Type::Int32 => Box::new(primitives::Int32CodeType),
            Type::UInt64 => Box::new(primitives::UInt64CodeType),
            Type::Int64 => Box::new(primitives::Int64CodeType),
            Type::Float32 => Box::new(primitives::Float32CodeType),
            Type::Float64 => Box::new(primitives::Float64CodeType),
            Type::Boolean => Box::new(primitives::BooleanCodeType),
            Type::String => Box::new(primitives::StringCodeType),
            Type::Bytes => Box::new(primitives::BytesCodeType),

            Type::Timestamp => Box::new(miscellany::TimestampCodeType),
            Type::Duration => Box::new(miscellany::DurationCodeType),

            Type::Enum { name, .. } => Box::new(enum_::EnumCodeType::new(name)),
            Type::Object { name, imp, .. } => Box::new(object::ObjectCodeType::new(name, imp)),
            Type::Record { name, .. } => Box::new(record::RecordCodeType::new(name)),
            Type::CallbackInterface { name, .. } => {
                Box::new(callback_interface::CallbackInterfaceCodeType::new(name))
            }
            Type::Optional { inner_type } => {
                Box::new(compounds::OptionalCodeType::new(*inner_type))
            }
            Type::Sequence { inner_type } => {
                Box::new(compounds::SequenceCodeType::new(*inner_type))
            }
            Type::Map {
                key_type,
                value_type,
            } => Box::new(compounds::MapCodeType::new(*key_type, *value_type)),
            Type::External { name, .. } => Box::new(external::ExternalCodeType::new(name)),
            Type::Custom { name, .. } => Box::new(custom::CustomCodeType::new(name)),
        }
    }

    fn find(&self, type_: &Type) -> Box<dyn CodeType> {
        self.create_code_type(type_.clone())
    }

    /// Get the idiomatic Swift rendering of a class name (for enums, records, errors, etc).
    fn class_name(&self, nm: &str) -> String {
        nm.to_string().to_upper_camel_case()
    }

    /// Get the idiomatic Swift rendering of a function name.
    fn fn_name(&self, nm: &str) -> String {
        nm.to_string().to_lower_camel_case()
    }

    /// Get the idiomatic Swift rendering of a variable name.
    fn var_name(&self, nm: &str) -> String {
        nm.to_string().to_lower_camel_case()
    }

    /// Get the idiomatic Swift rendering of an individual enum variant.
    fn enum_variant_name(&self, nm: &str) -> String {
        nm.to_string().to_lower_camel_case()
    }

    /// Get the idiomatic Swift rendering of an FFI callback function name
    fn ffi_callback_name(&self, nm: &str) -> String {
        format!("Uniffi{}", nm.to_upper_camel_case())
    }

    /// Get the idiomatic Swift rendering of an FFI struct name
    fn ffi_struct_name(&self, nm: &str) -> String {
        format!("Uniffi{}", nm.to_upper_camel_case())
    }

    /// Get the idiomatic Swift rendering of an if guard name
    fn if_guard_name(&self, nm: &str) -> String {
        format!("UNIFFI_FFIDEF_{}", nm.to_shouty_snake_case())
    }

    fn ffi_type_label(&self, ffi_type: &FfiType) -> String {
        match ffi_type {
            FfiType::Int8 => "Int8".into(),
            FfiType::UInt8 => "UInt8".into(),
            FfiType::Int16 => "Int16".into(),
            FfiType::UInt16 => "UInt16".into(),
            FfiType::Int32 => "Int32".into(),
            FfiType::UInt32 => "UInt32".into(),
            FfiType::Int64 => "Int64".into(),
            FfiType::UInt64 => "UInt64".into(),
            FfiType::Float32 => "Float".into(),
            FfiType::Float64 => "Double".into(),
            FfiType::Handle => "UInt64".into(),
            FfiType::RustArcPtr(_) => "UnsafeMutableRawPointer".into(),
            FfiType::RustBuffer(_) => "RustBuffer".into(),
            FfiType::RustCallStatus => "RustCallStatus".into(),
            FfiType::ForeignBytes => "ForeignBytes".into(),
            // Note: @escaping is required for Swift versions before 5.7 for callbacks passed into
            // async functions. Swift 5.7 and later does not require it.  We should probably remove
            // it once we upgrade our minimum requirement to 5.7 or later.
            FfiType::Callback(name) => format!("@escaping {}", self.ffi_callback_name(name)),
            FfiType::Struct(name) => self.ffi_struct_name(name),
            FfiType::Reference(inner) => {
                format!("UnsafeMutablePointer<{}>", self.ffi_type_label(inner))
            }
            FfiType::VoidPointer => "UnsafeMutableRawPointer".into(),
        }
    }

    /// Default values for FFI types
    ///
    /// Used to set a default return value when returning an error
    fn ffi_default_value(&self, return_type: Option<&FfiType>) -> String {
        match return_type {
            Some(t) => match t {
                FfiType::UInt8
                | FfiType::Int8
                | FfiType::UInt16
                | FfiType::Int16
                | FfiType::UInt32
                | FfiType::Int32
                | FfiType::UInt64
                | FfiType::Int64 => "0".to_owned(),
                FfiType::Float32 | FfiType::Float64 => "0.0".to_owned(),
                FfiType::RustArcPtr(_) => "nil".to_owned(),
                FfiType::RustBuffer(_) => "RustBuffer.empty()".to_owned(),
                _ => unimplemented!("FFI return type: {t:?}"),
            },
            // When we need to use a value for void returns, we use a `u8` placeholder
            None => "0".to_owned(),
        }
    }

    fn ffi_canonical_name(&self, ffi_type: &FfiType) -> String {
        self.ffi_type_label(ffi_type)
    }

    /// Get the name of the protocol and class name for an object.
    ///
    /// If we support callback interfaces, the protocol name is the object name, and the class name is derived from that.
    /// Otherwise, the class name is the object name and the protocol name is derived from that.
    ///
    /// This split determines what types `FfiConverter.lower()` inputs.  If we support callback
    /// interfaces, `lower` must lower anything that implements the protocol.  If not, then lower
    /// only lowers the concrete class.
    fn object_names(&self, obj: &Object) -> (String, String) {
        let class_name = self.class_name(obj.name());
        if obj.has_callback_interface() {
            let impl_name = format!("{class_name}Impl");
            (class_name, impl_name)
        } else {
            (format!("{class_name}Protocol"), class_name)
        }
    }
}

pub mod filters {
    use super::*;
    pub use crate::backend::filters::*;
    use uniffi_meta::LiteralMetadata;

    fn oracle() -> &'static SwiftCodeOracle {
        &SwiftCodeOracle
    }

    pub fn type_name(as_type: &impl AsType) -> Result<String, askama::Error> {
        Ok(oracle().find(&as_type.as_type()).type_label())
    }

    pub fn return_type_name(as_type: Option<&impl AsType>) -> Result<String, askama::Error> {
        Ok(match as_type {
            Some(as_type) => oracle().find(&as_type.as_type()).type_label(),
            None => "()".to_owned(),
        })
    }

    pub fn canonical_name(as_type: &impl AsType) -> Result<String, askama::Error> {
        Ok(oracle().find(&as_type.as_type()).canonical_name())
    }

    pub fn ffi_converter_name(as_type: &impl AsType) -> Result<String, askama::Error> {
        Ok(oracle().find(&as_type.as_type()).ffi_converter_name())
    }

    pub fn ffi_error_converter_name(as_type: &impl AsType) -> Result<String, askama::Error> {
        // special handling for types used as errors.
        let mut name = oracle().find(&as_type.as_type()).ffi_converter_name();
        if matches!(&as_type.as_type(), Type::Object { .. }) {
            name.push_str("__as_error")
        }
        Ok(name)
    }

    pub fn lower_fn(as_type: &impl AsType) -> Result<String, askama::Error> {
        Ok(oracle().find(&as_type.as_type()).lower())
    }

    pub fn write_fn(as_type: &impl AsType) -> Result<String, askama::Error> {
        Ok(oracle().find(&as_type.as_type()).write())
    }

    pub fn lift_fn(as_type: &impl AsType) -> Result<String, askama::Error> {
        Ok(oracle().find(&as_type.as_type()).lift())
    }

    pub fn read_fn(as_type: &impl AsType) -> Result<String, askama::Error> {
        Ok(oracle().find(&as_type.as_type()).read())
    }

    pub fn literal_swift(
        literal: &Literal,
        as_type: &impl AsType,
    ) -> Result<String, askama::Error> {
        Ok(oracle().find(&as_type.as_type()).literal(literal))
    }

    // Get the idiomatic Swift rendering of an individual enum variant's discriminant
    pub fn variant_discr_literal(e: &Enum, index: &usize) -> Result<String, askama::Error> {
        let literal = e.variant_discr(*index).expect("invalid index");
        match literal {
            LiteralMetadata::UInt(v, _, _) => Ok(v.to_string()),
            LiteralMetadata::Int(v, _, _) => Ok(v.to_string()),
            _ => unreachable!("expected an UInt!"),
        }
    }

    /// Get the Swift type for an FFIType
    pub fn ffi_type_name(ffi_type: &FfiType) -> Result<String, askama::Error> {
        Ok(oracle().ffi_type_label(ffi_type))
    }

    pub fn ffi_canonical_name(ffi_type: &FfiType) -> Result<String, askama::Error> {
        Ok(oracle().ffi_canonical_name(ffi_type))
    }

    pub fn ffi_default_value(return_type: Option<FfiType>) -> Result<String, askama::Error> {
        Ok(oracle().ffi_default_value(return_type.as_ref()))
    }

    /// Like `ffi_type_name`, but used in `BridgingHeaderTemplate.h` which uses a slightly different
    /// names.
    pub fn header_ffi_type_name(ffi_type: &FfiType) -> Result<String, askama::Error> {
        Ok(match ffi_type {
            FfiType::Int8 => "int8_t".into(),
            FfiType::UInt8 => "uint8_t".into(),
            FfiType::Int16 => "int16_t".into(),
            FfiType::UInt16 => "uint16_t".into(),
            FfiType::Int32 => "int32_t".into(),
            FfiType::UInt32 => "uint32_t".into(),
            FfiType::Int64 => "int64_t".into(),
            FfiType::UInt64 => "uint64_t".into(),
            FfiType::Float32 => "float".into(),
            FfiType::Float64 => "double".into(),
            FfiType::Handle => "uint64_t".into(),
            FfiType::RustArcPtr(_) => "void*_Nonnull".into(),
            FfiType::RustBuffer(_) => "RustBuffer".into(),
            FfiType::RustCallStatus => "RustCallStatus".into(),
            FfiType::ForeignBytes => "ForeignBytes".into(),
            FfiType::Callback(name) => {
                format!("{} _Nonnull", SwiftCodeOracle.ffi_callback_name(name))
            }
            FfiType::Struct(name) => SwiftCodeOracle.ffi_struct_name(name),
            FfiType::Reference(inner) => format!("{}* _Nonnull", header_ffi_type_name(inner)?),
            FfiType::VoidPointer => "void* _Nonnull".into(),
        })
    }

    /// Get the idiomatic Swift rendering of a class name (for enums, records, errors, etc).
    pub fn class_name(nm: &str) -> Result<String, askama::Error> {
        Ok(oracle().class_name(nm))
    }

    /// Get the idiomatic Swift rendering of a function name.
    pub fn fn_name(nm: &str) -> Result<String, askama::Error> {
        Ok(quote_general_keyword(oracle().fn_name(nm)))
    }

    /// Get the idiomatic Swift rendering of a variable name.
    pub fn var_name(nm: &str) -> Result<String, askama::Error> {
        Ok(quote_general_keyword(oracle().var_name(nm)))
    }

    /// Get the idiomatic Swift rendering of an arguments name.
    /// This is the same as the var name but quoting is not required.
    pub fn arg_name(nm: &str) -> Result<String, askama::Error> {
        Ok(quote_arg_keyword(oracle().var_name(nm)))
    }

    /// Get the idiomatic Swift rendering of an individual enum variant, quoted if it is a keyword (for use in e.g. declarations)
    pub fn enum_variant_swift_quoted(nm: &str) -> Result<String, askama::Error> {
        Ok(quote_general_keyword(oracle().enum_variant_name(nm)))
    }

    /// Get the idiomatic Swift rendering of an individual enum variant, for contexts (for use in non-declaration contexts where quoting is not needed)
    pub fn enum_variant_swift(nm: &str) -> Result<String, askama::Error> {
        Ok(oracle().enum_variant_name(nm))
    }

    /// Get the idiomatic Swift rendering of an FFI callback function name
    pub fn ffi_callback_name(nm: &str) -> Result<String, askama::Error> {
        Ok(oracle().ffi_callback_name(nm))
    }

    /// Get the idiomatic Swift rendering of an FFI struct name
    pub fn ffi_struct_name(nm: &str) -> Result<String, askama::Error> {
        Ok(oracle().ffi_struct_name(nm))
    }

    /// Get the idiomatic Swift rendering of an if guard name
    pub fn if_guard_name(nm: &str) -> Result<String, askama::Error> {
        Ok(oracle().if_guard_name(nm))
    }

    /// Get the idiomatic Swift rendering of docstring
    pub fn docstring(docstring: &str, spaces: &i32) -> Result<String, askama::Error> {
        let middle = textwrap::indent(&textwrap::dedent(docstring), " * ");
        let wrapped = format!("/**\n{middle}\n */");

        let spaces = usize::try_from(*spaces).unwrap_or_default();
        Ok(textwrap::indent(&wrapped, &" ".repeat(spaces)))
    }

    pub fn error_handler(result: &ResultType) -> Result<String, askama::Error> {
        Ok(match &result.throws_type {
            Some(t) => format!("{}.lift", ffi_converter_name(t)?),
            None => "nil".into(),
        })
    }

    /// Name of the callback function to handle an async result
    pub fn future_callback(result: &ResultType) -> Result<String, askama::Error> {
        Ok(format!(
            "uniffiFutureCallbackHandler{}{}",
            match &result.return_type {
                Some(t) => SwiftCodeOracle.find(t).canonical_name(),
                None => "Void".into(),
            },
            match &result.throws_type {
                Some(t) => SwiftCodeOracle.find(t).canonical_name(),
                None => "".into(),
            }
        ))
    }

    pub fn object_names(obj: &Object) -> Result<(String, String), askama::Error> {
        Ok(SwiftCodeOracle.object_names(obj))
    }
}