1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! # Low-level typesystem for the FFI layer of a component interface.
//!
//! This module provides the "FFI-level" typesystem of a UniFFI Rust Component, that is,
//! the C-style functions and structs and primitive datatypes that are used to interface
//! between the Rust component code and the foreign-language bindings.
//!
//! These types are purely an implementation detail of UniFFI, so consumers shouldn't
//! need to know about them. But as a developer working on UniFFI itself, you're likely
//! to spend a lot of time thinking about how these low-level types are used to represent
//! the higher-level "interface types" from the [`Type`] enum.
/// Represents the restricted set of low-level types that can be used to construct
/// the C-style FFI layer between a rust component and its foreign language bindings.
///
/// For the types that involve memory allocation, we make a distinction between
/// "owned" types (the recipient must free it, or pass it to someone else) and
/// "borrowed" types (the sender must keep it alive for the duration of the call).
use uniffi_meta::{ExternalKind, Type};
#[derive(Debug, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum FfiType {
// N.B. there are no booleans at this layer, since they cause problems for JNA.
UInt8,
Int8,
UInt16,
Int16,
UInt32,
Int32,
UInt64,
Int64,
Float32,
Float64,
/// A `*const c_void` pointer to a rust-owned `Arc<T>`.
/// If you've got one of these, you must call the appropriate rust function to free it.
/// The templates will generate a unique `free` function for each T.
/// The inner string references the name of the `T` type.
RustArcPtr(String),
/// A byte buffer allocated by rust, and owned by whoever currently holds it.
/// If you've got one of these, you must either call the appropriate rust function to free it
/// or pass it to someone that will.
/// If the inner option is Some, it is the name of the external type. The bindings may need
/// to use this name to import the correct RustBuffer for that type.
RustBuffer(Option<String>),
/// A borrowed reference to some raw bytes owned by foreign language code.
/// The provider of this reference must keep it alive for the duration of the receiving call.
ForeignBytes,
/// Pointer to a callback function. The inner value which matches one of the callback
/// definitions in [crate::ComponentInterface::ffi_definitions].
Callback(String),
/// Pointer to a FFI struct (e.g. a VTable). The inner value matches one of the struct
/// definitions in [crate::ComponentInterface::ffi_definitions].
Struct(String),
/// Opaque 64-bit handle
///
/// These are used to pass objects across the FFI.
Handle,
RustCallStatus,
/// Pointer to an FfiType.
Reference(Box<FfiType>),
/// Opaque pointer
VoidPointer,
}
impl FfiType {
pub fn reference(self) -> FfiType {
FfiType::Reference(Box::new(self))
}
/// Unique name for an FFI return type
pub fn return_type_name(return_type: Option<&FfiType>) -> String {
match return_type {
Some(t) => match t {
FfiType::UInt8 => "u8".to_owned(),
FfiType::Int8 => "i8".to_owned(),
FfiType::UInt16 => "u16".to_owned(),
FfiType::Int16 => "i16".to_owned(),
FfiType::UInt32 => "u32".to_owned(),
FfiType::Int32 => "i32".to_owned(),
FfiType::UInt64 => "u64".to_owned(),
FfiType::Int64 => "i64".to_owned(),
FfiType::Float32 => "f32".to_owned(),
FfiType::Float64 => "f64".to_owned(),
FfiType::RustArcPtr(_) => "pointer".to_owned(),
FfiType::RustBuffer(_) => "rust_buffer".to_owned(),
_ => unimplemented!("FFI return type: {t:?}"),
},
None => "void".to_owned(),
}
}
}
/// When passing data across the FFI, each `Type` value will be lowered into a corresponding
/// `FfiType` value. This conversion tells you which one.
///
/// Note that the conversion is one-way - given an FfiType, it is not in general possible to
/// tell what the corresponding Type is that it's being used to represent.
impl From<&Type> for FfiType {
fn from(t: &Type) -> FfiType {
match t {
// Types that are the same map to themselves, naturally.
Type::UInt8 => FfiType::UInt8,
Type::Int8 => FfiType::Int8,
Type::UInt16 => FfiType::UInt16,
Type::Int16 => FfiType::Int16,
Type::UInt32 => FfiType::UInt32,
Type::Int32 => FfiType::Int32,
Type::UInt64 => FfiType::UInt64,
Type::Int64 => FfiType::Int64,
Type::Float32 => FfiType::Float32,
Type::Float64 => FfiType::Float64,
// Booleans lower into an Int8, to work around a bug in JNA.
Type::Boolean => FfiType::Int8,
// Strings are always owned rust values.
// We might add a separate type for borrowed strings in future.
Type::String => FfiType::RustBuffer(None),
// Byte strings are also always owned rust values.
// We might add a separate type for borrowed byte strings in future as well.
Type::Bytes => FfiType::RustBuffer(None),
// Objects are pointers to an Arc<>
Type::Object { name, .. } => FfiType::RustArcPtr(name.to_owned()),
// Callback interfaces are passed as opaque integer handles.
Type::CallbackInterface { .. } => FfiType::UInt64,
// Other types are serialized into a bytebuffer and deserialized on the other side.
Type::Enum { .. }
| Type::Record { .. }
| Type::Optional { .. }
| Type::Sequence { .. }
| Type::Map { .. }
| Type::Timestamp
| Type::Duration => FfiType::RustBuffer(None),
Type::External {
name,
kind: ExternalKind::Interface,
..
}
| Type::External {
name,
kind: ExternalKind::Trait,
..
} => FfiType::RustArcPtr(name.clone()),
Type::External {
name,
kind: ExternalKind::DataClass,
..
} => FfiType::RustBuffer(Some(name.clone())),
Type::Custom { builtin, .. } => FfiType::from(builtin.as_ref()),
}
}
}
// Needed for rust scaffolding askama template
impl From<Type> for FfiType {
fn from(ty: Type) -> Self {
(&ty).into()
}
}
impl From<&&Type> for FfiType {
fn from(ty: &&Type) -> Self {
(*ty).into()
}
}
/// An Ffi definition
#[derive(Debug, Clone)]
pub enum FfiDefinition {
Function(FfiFunction),
CallbackFunction(FfiCallbackFunction),
Struct(FfiStruct),
}
impl FfiDefinition {
pub fn name(&self) -> &str {
match self {
Self::Function(f) => f.name(),
Self::CallbackFunction(f) => f.name(),
Self::Struct(s) => s.name(),
}
}
}
/// Represents an "extern C"-style function that will be part of the FFI.
///
/// These can't be declared explicitly in the UDL, but rather, are derived automatically
/// from the high-level interface. Each callable thing in the component API will have a
/// corresponding `FfiFunction` through which it can be invoked, and UniFFI also provides
/// some built-in `FfiFunction` helpers for use in the foreign language bindings.
#[derive(Debug, Clone)]
pub struct FfiFunction {
pub(super) name: String,
pub(super) is_async: bool,
pub(super) arguments: Vec<FfiArgument>,
pub(super) return_type: Option<FfiType>,
pub(super) has_rust_call_status_arg: bool,
/// Used by C# generator to differentiate the free function and call it with void*
/// instead of C# `SafeHandle` type. See <https://github.com/mozilla/uniffi-rs/pull/1488>.
pub(super) is_object_free_function: bool,
}
impl FfiFunction {
pub fn callback_init(module_path: &str, trait_name: &str, vtable_name: String) -> Self {
Self {
name: uniffi_meta::init_callback_vtable_fn_symbol_name(module_path, trait_name),
arguments: vec![FfiArgument {
name: "vtable".to_string(),
type_: FfiType::Struct(vtable_name).reference(),
}],
return_type: None,
has_rust_call_status_arg: false,
..Self::default()
}
}
pub fn name(&self) -> &str {
&self.name
}
pub fn is_async(&self) -> bool {
self.is_async
}
pub fn arguments(&self) -> Vec<&FfiArgument> {
self.arguments.iter().collect()
}
pub fn return_type(&self) -> Option<&FfiType> {
self.return_type.as_ref()
}
pub fn has_rust_call_status_arg(&self) -> bool {
self.has_rust_call_status_arg
}
pub fn is_object_free_function(&self) -> bool {
self.is_object_free_function
}
pub fn init(
&mut self,
return_type: Option<FfiType>,
args: impl IntoIterator<Item = FfiArgument>,
) {
self.arguments = args.into_iter().collect();
if self.is_async() {
self.return_type = Some(FfiType::Handle);
self.has_rust_call_status_arg = false;
} else {
self.return_type = return_type;
}
}
}
impl Default for FfiFunction {
fn default() -> Self {
Self {
name: "".into(),
is_async: false,
arguments: Vec::new(),
return_type: None,
has_rust_call_status_arg: true,
is_object_free_function: false,
}
}
}
/// Represents an argument to an FFI function.
///
/// Each argument has a name and a type.
#[derive(Debug, Clone)]
pub struct FfiArgument {
pub(super) name: String,
pub(super) type_: FfiType,
}
impl FfiArgument {
pub fn new(name: impl Into<String>, type_: FfiType) -> Self {
Self {
name: name.into(),
type_,
}
}
pub fn name(&self) -> &str {
&self.name
}
pub fn type_(&self) -> FfiType {
self.type_.clone()
}
}
/// Represents an "extern C"-style callback function
///
/// These are defined in the foreign code and passed to Rust as a function pointer.
#[derive(Debug, Default, Clone)]
pub struct FfiCallbackFunction {
// Name for this function type. This matches the value inside `FfiType::Callback`
pub(super) name: String,
pub(super) arguments: Vec<FfiArgument>,
pub(super) return_type: Option<FfiType>,
pub(super) has_rust_call_status_arg: bool,
}
impl FfiCallbackFunction {
pub fn name(&self) -> &str {
&self.name
}
pub fn arguments(&self) -> Vec<&FfiArgument> {
self.arguments.iter().collect()
}
pub fn return_type(&self) -> Option<&FfiType> {
self.return_type.as_ref()
}
pub fn has_rust_call_status_arg(&self) -> bool {
self.has_rust_call_status_arg
}
}
/// Represents a repr(C) struct used in the FFI
#[derive(Debug, Default, Clone)]
pub struct FfiStruct {
pub(super) name: String,
pub(super) fields: Vec<FfiField>,
}
impl FfiStruct {
/// Get the name of this struct
pub fn name(&self) -> &str {
&self.name
}
/// Get the fields for this struct
pub fn fields(&self) -> &[FfiField] {
&self.fields
}
}
/// Represents a field of an [FfiStruct]
#[derive(Debug, Clone)]
pub struct FfiField {
pub(super) name: String,
pub(super) type_: FfiType,
}
impl FfiField {
pub fn new(name: impl Into<String>, type_: FfiType) -> Self {
Self {
name: name.into(),
type_,
}
}
pub fn name(&self) -> &str {
&self.name
}
pub fn type_(&self) -> FfiType {
self.type_.clone()
}
}
impl From<FfiFunction> for FfiDefinition {
fn from(value: FfiFunction) -> FfiDefinition {
FfiDefinition::Function(value)
}
}
impl From<FfiStruct> for FfiDefinition {
fn from(value: FfiStruct) -> FfiDefinition {
FfiDefinition::Struct(value)
}
}
impl From<FfiCallbackFunction> for FfiDefinition {
fn from(value: FfiCallbackFunction) -> FfiDefinition {
FfiDefinition::CallbackFunction(value)
}
}
#[cfg(test)]
mod test {
// There's not really much to test here to be honest,
// it's mostly type declarations.
}