1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! # Object definitions for a `ComponentInterface`.
//!
//! This module converts "interface" definitions from UDL into [`Object`] structures
//! that can be added to a `ComponentInterface`, which are the main way we define stateful
//! objects with behaviour for a UniFFI Rust Component. An [`Object`] is an opaque handle
//! to some state on which methods can be invoked.
//!
//! (The terminology mismatch between "interface" and "object" is a historical artifact of
//! this tool prior to committing to WebIDL syntax).
//!
//! A declaration in the UDL like this:
//!
//! ```
//! # let ci = uniffi_bindgen::interface::ComponentInterface::from_webidl(r##"
//! # namespace example {};
//! interface Example {
//!   constructor(string? name);
//!   string my_name();
//! };
//! # "##, "crate_name")?;
//! # Ok::<(), anyhow::Error>(())
//! ```
//!
//! Will result in an [`Object`] member with one [`Constructor`] and one [`Method`] being added
//! to the resulting [`crate::ComponentInterface`]:
//!
//! ```
//! # let ci = uniffi_bindgen::interface::ComponentInterface::from_webidl(r##"
//! # namespace example {};
//! # interface Example {
//! #   constructor(string? name);
//! #   string my_name();
//! # };
//! # "##, "crate_name")?;
//! let obj = ci.get_object_definition("Example").unwrap();
//! assert_eq!(obj.name(), "Example");
//! assert_eq!(obj.constructors().len(), 1);
//! assert_eq!(obj.constructors()[0].arguments()[0].name(), "name");
//! assert_eq!(obj.methods().len(),1 );
//! assert_eq!(obj.methods()[0].name(), "my_name");
//! # Ok::<(), anyhow::Error>(())
//! ```
//!
//! It's not necessary for all interfaces to have constructors.
//! ```
//! # let ci = uniffi_bindgen::interface::ComponentInterface::from_webidl(r##"
//! # namespace example {};
//! # interface Example {};
//! # "##, "crate_name")?;
//! let obj = ci.get_object_definition("Example").unwrap();
//! assert_eq!(obj.name(), "Example");
//! assert_eq!(obj.constructors().len(), 0);
//! # Ok::<(), anyhow::Error>(())
//! ```

use anyhow::Result;
use uniffi_meta::Checksum;

use super::callbacks;
use super::ffi::{FfiArgument, FfiCallbackFunction, FfiFunction, FfiStruct, FfiType};
use super::function::{Argument, Callable};
use super::{AsType, ObjectImpl, Type, TypeIterator};

/// An "object" is an opaque type that is passed around by reference, can
/// have methods called on it, and so on - basically your classic Object Oriented Programming
/// type of deal, except without elaborate inheritance hierarchies. Some can be instantiated.
///
/// In UDL these correspond to the `interface` keyword.
///
/// At the FFI layer, objects are represented by an opaque integer handle and a set of functions
/// a common prefix. The object's constructors are functions that return new objects by handle,
/// and its methods are functions that take a handle as first argument. The foreign language
/// binding code is expected to stitch these functions back together into an appropriate class
/// definition (or that language's equivalent thereof).
///
/// TODO:
///  - maybe "Class" would be a better name than "Object" here?
#[derive(Debug, Clone, Checksum)]
pub struct Object {
    pub(super) name: String,
    /// How this object is implemented in Rust
    pub(super) imp: ObjectImpl,
    pub(super) module_path: String,
    pub(super) constructors: Vec<Constructor>,
    pub(super) methods: Vec<Method>,
    // The "trait" methods - they have a (presumably "well known") name, and
    // a regular method (albeit with a generated name)
    // XXX - this should really be a HashSet, but not enough transient types support hash to make it worthwhile now.
    pub(super) uniffi_traits: Vec<UniffiTrait>,
    // We don't include the FfiFuncs in the hash calculation, because:
    //  - it is entirely determined by the other fields,
    //    so excluding it is safe.
    //  - its `name` property includes a checksum derived from  the very
    //    hash value we're trying to calculate here, so excluding it
    //    avoids a weird circular dependency in the calculation.

    // FFI function to clone a pointer for this object
    #[checksum_ignore]
    pub(super) ffi_func_clone: FfiFunction,
    // FFI function to free a pointer for this object
    #[checksum_ignore]
    pub(super) ffi_func_free: FfiFunction,
    // Ffi function to initialize the foreign callback for trait interfaces
    #[checksum_ignore]
    pub(super) ffi_init_callback: Option<FfiFunction>,
    #[checksum_ignore]
    pub(super) docstring: Option<String>,
}

impl Object {
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Returns the fully qualified name that should be used by Rust code for this object.
    /// Includes `r#`, traits get a leading `dyn`. If we ever supported associated types, then
    /// this would also include them.
    pub fn rust_name(&self) -> String {
        self.imp.rust_name_for(&self.name)
    }

    pub fn imp(&self) -> &ObjectImpl {
        &self.imp
    }

    pub fn is_trait_interface(&self) -> bool {
        self.imp.is_trait_interface()
    }

    pub fn has_callback_interface(&self) -> bool {
        self.imp.has_callback_interface()
    }

    pub fn has_async_method(&self) -> bool {
        self.methods.iter().any(Method::is_async)
    }

    pub fn constructors(&self) -> Vec<&Constructor> {
        self.constructors.iter().collect()
    }

    pub fn primary_constructor(&self) -> Option<&Constructor> {
        self.constructors
            .iter()
            .find(|cons| cons.is_primary_constructor())
    }

    pub fn alternate_constructors(&self) -> Vec<&Constructor> {
        self.constructors
            .iter()
            .filter(|cons| !cons.is_primary_constructor())
            .collect()
    }

    pub fn methods(&self) -> Vec<&Method> {
        self.methods.iter().collect()
    }

    pub fn get_method(&self, name: &str) -> Method {
        let matches: Vec<_> = self.methods.iter().filter(|m| m.name() == name).collect();
        match matches.len() {
            1 => matches[0].clone(),
            n => panic!("{n} methods named {name}"),
        }
    }

    pub fn uniffi_traits(&self) -> Vec<&UniffiTrait> {
        self.uniffi_traits.iter().collect()
    }

    pub fn ffi_object_clone(&self) -> &FfiFunction {
        &self.ffi_func_clone
    }

    pub fn ffi_object_free(&self) -> &FfiFunction {
        &self.ffi_func_free
    }

    pub fn ffi_init_callback(&self) -> &FfiFunction {
        self.ffi_init_callback
            .as_ref()
            .unwrap_or_else(|| panic!("No ffi_init_callback set for {}", &self.name))
    }

    pub fn docstring(&self) -> Option<&str> {
        self.docstring.as_deref()
    }

    pub fn iter_ffi_function_definitions(&self) -> impl Iterator<Item = &FfiFunction> {
        [&self.ffi_func_clone, &self.ffi_func_free]
            .into_iter()
            .chain(&self.ffi_init_callback)
            .chain(self.constructors.iter().map(|f| &f.ffi_func))
            .chain(self.methods.iter().map(|f| &f.ffi_func))
            .chain(
                self.uniffi_traits
                    .iter()
                    .flat_map(|ut| match ut {
                        UniffiTrait::Display { fmt: m }
                        | UniffiTrait::Debug { fmt: m }
                        | UniffiTrait::Hash { hash: m } => vec![m],
                        UniffiTrait::Eq { eq, ne } => vec![eq, ne],
                    })
                    .map(|m| &m.ffi_func),
            )
    }

    pub fn derive_ffi_funcs(&mut self) -> Result<()> {
        assert!(!self.ffi_func_clone.name().is_empty());
        assert!(!self.ffi_func_free.name().is_empty());
        self.ffi_func_clone.arguments = vec![FfiArgument {
            name: "ptr".to_string(),
            type_: FfiType::RustArcPtr(self.name.to_string()),
        }];
        self.ffi_func_clone.return_type = Some(FfiType::RustArcPtr(self.name.to_string()));
        self.ffi_func_free.arguments = vec![FfiArgument {
            name: "ptr".to_string(),
            type_: FfiType::RustArcPtr(self.name.to_string()),
        }];
        self.ffi_func_free.return_type = None;
        self.ffi_func_free.is_object_free_function = true;
        if self.has_callback_interface() {
            self.ffi_init_callback = Some(FfiFunction::callback_init(
                &self.module_path,
                &self.name,
                callbacks::vtable_name(&self.name),
            ));
        }

        for cons in self.constructors.iter_mut() {
            cons.derive_ffi_func();
        }
        for meth in self.methods.iter_mut() {
            meth.derive_ffi_func()?;
        }
        for ut in self.uniffi_traits.iter_mut() {
            ut.derive_ffi_func()?;
        }

        Ok(())
    }

    /// For trait interfaces, FfiCallbacks to define for our methods, otherwise an empty vec.
    pub fn ffi_callbacks(&self) -> Vec<FfiCallbackFunction> {
        if self.is_trait_interface() {
            callbacks::ffi_callbacks(&self.name, &self.methods)
        } else {
            vec![]
        }
    }

    /// For trait interfaces, the VTable FFI type
    pub fn vtable(&self) -> Option<FfiType> {
        self.is_trait_interface()
            .then(|| FfiType::Struct(callbacks::vtable_name(&self.name)))
    }

    /// For trait interfaces, the VTable struct to define.  Otherwise None.
    pub fn vtable_definition(&self) -> Option<FfiStruct> {
        self.is_trait_interface()
            .then(|| callbacks::vtable_struct(&self.name, &self.methods))
    }

    /// Vec of (ffi_callback_name, method) pairs
    pub fn vtable_methods(&self) -> Vec<(FfiCallbackFunction, &Method)> {
        self.methods
            .iter()
            .enumerate()
            .map(|(i, method)| {
                (
                    callbacks::method_ffi_callback(&self.name, method, i),
                    method,
                )
            })
            .collect()
    }

    pub fn iter_types(&self) -> TypeIterator<'_> {
        Box::new(
            self.methods
                .iter()
                .map(Method::iter_types)
                .chain(self.uniffi_traits.iter().map(UniffiTrait::iter_types))
                .chain(self.constructors.iter().map(Constructor::iter_types))
                .flatten(),
        )
    }
}

impl AsType for Object {
    fn as_type(&self) -> Type {
        Type::Object {
            name: self.name.clone(),
            module_path: self.module_path.clone(),
            imp: self.imp,
        }
    }
}

impl From<uniffi_meta::ObjectMetadata> for Object {
    fn from(meta: uniffi_meta::ObjectMetadata) -> Self {
        let ffi_clone_name = meta.clone_ffi_symbol_name();
        let ffi_free_name = meta.free_ffi_symbol_name();
        Object {
            module_path: meta.module_path,
            name: meta.name,
            imp: meta.imp,
            constructors: Default::default(),
            methods: Default::default(),
            uniffi_traits: Default::default(),
            ffi_func_clone: FfiFunction {
                name: ffi_clone_name,
                ..Default::default()
            },
            ffi_func_free: FfiFunction {
                name: ffi_free_name,
                ..Default::default()
            },
            ffi_init_callback: None,
            docstring: meta.docstring.clone(),
        }
    }
}

impl From<uniffi_meta::UniffiTraitMetadata> for UniffiTrait {
    fn from(meta: uniffi_meta::UniffiTraitMetadata) -> Self {
        match meta {
            uniffi_meta::UniffiTraitMetadata::Debug { fmt } => {
                UniffiTrait::Debug { fmt: fmt.into() }
            }
            uniffi_meta::UniffiTraitMetadata::Display { fmt } => {
                UniffiTrait::Display { fmt: fmt.into() }
            }
            uniffi_meta::UniffiTraitMetadata::Eq { eq, ne } => UniffiTrait::Eq {
                eq: eq.into(),
                ne: ne.into(),
            },
            uniffi_meta::UniffiTraitMetadata::Hash { hash } => {
                UniffiTrait::Hash { hash: hash.into() }
            }
        }
    }
}

// Represents a constructor for an object type.
//
// In the FFI, this will be a function that returns a pointer to an instance
// of the corresponding object type.
#[derive(Debug, Clone, Checksum)]
pub struct Constructor {
    pub(super) name: String,
    pub(super) object_name: String,
    pub(super) object_module_path: String,
    pub(super) is_async: bool,
    pub(super) arguments: Vec<Argument>,
    // We don't include the FFIFunc in the hash calculation, because:
    //  - it is entirely determined by the other fields,
    //    so excluding it is safe.
    //  - its `name` property includes a checksum derived from  the very
    //    hash value we're trying to calculate here, so excluding it
    //    avoids a weird circular dependency in the calculation.
    #[checksum_ignore]
    pub(super) ffi_func: FfiFunction,
    #[checksum_ignore]
    pub(super) docstring: Option<String>,
    pub(super) throws: Option<Type>,
    pub(super) checksum_fn_name: String,
    // Force a checksum value, or we'll fallback to the trait.
    #[checksum_ignore]
    pub(super) checksum: Option<u16>,
}

impl Constructor {
    pub fn name(&self) -> &str {
        &self.name
    }

    pub fn arguments(&self) -> Vec<&Argument> {
        self.arguments.iter().collect()
    }

    pub fn full_arguments(&self) -> Vec<Argument> {
        self.arguments.to_vec()
    }

    pub fn ffi_func(&self) -> &FfiFunction {
        &self.ffi_func
    }

    pub fn checksum_fn_name(&self) -> &str {
        &self.checksum_fn_name
    }

    pub fn checksum(&self) -> u16 {
        self.checksum.unwrap_or_else(|| uniffi_meta::checksum(self))
    }

    pub fn throws(&self) -> bool {
        self.throws.is_some()
    }

    pub fn throws_name(&self) -> Option<&str> {
        super::throws_name(&self.throws)
    }

    pub fn throws_type(&self) -> Option<&Type> {
        self.throws.as_ref()
    }

    pub fn docstring(&self) -> Option<&str> {
        self.docstring.as_deref()
    }

    pub fn is_primary_constructor(&self) -> bool {
        self.name == "new"
    }

    fn derive_ffi_func(&mut self) {
        assert!(!self.ffi_func.name().is_empty());
        self.ffi_func.init(
            Some(FfiType::RustArcPtr(self.object_name.clone())),
            self.arguments.iter().map(Into::into),
        );
    }

    pub fn iter_types(&self) -> TypeIterator<'_> {
        Box::new(self.arguments.iter().flat_map(Argument::iter_types))
    }
}

impl From<uniffi_meta::ConstructorMetadata> for Constructor {
    fn from(meta: uniffi_meta::ConstructorMetadata) -> Self {
        let ffi_name = meta.ffi_symbol_name();
        let checksum_fn_name = meta.checksum_symbol_name();
        let arguments = meta.inputs.into_iter().map(Into::into).collect();

        let ffi_func = FfiFunction {
            name: ffi_name,
            is_async: meta.is_async,
            ..FfiFunction::default()
        };
        Self {
            name: meta.name,
            object_name: meta.self_name,
            is_async: meta.is_async,
            object_module_path: meta.module_path,
            arguments,
            ffi_func,
            docstring: meta.docstring.clone(),
            throws: meta.throws.map(Into::into),
            checksum_fn_name,
            checksum: meta.checksum,
        }
    }
}

// Represents an instance method for an object type.
//
// The FFI will represent this as a function whose first/self argument is a
// `FfiType::RustArcPtr` to the instance.
#[derive(Debug, Clone, Checksum)]
pub struct Method {
    pub(super) name: String,
    pub(super) object_name: String,
    pub(super) object_module_path: String,
    pub(super) is_async: bool,
    pub(super) object_impl: ObjectImpl,
    pub(super) arguments: Vec<Argument>,
    pub(super) return_type: Option<Type>,
    // We don't include the FFIFunc in the hash calculation, because:
    //  - it is entirely determined by the other fields,
    //    so excluding it is safe.
    //  - its `name` property includes a checksum derived from  the very
    //    hash value we're trying to calculate here, so excluding it
    //    avoids a weird circular dependency in the calculation.
    #[checksum_ignore]
    pub(super) ffi_func: FfiFunction,
    #[checksum_ignore]
    pub(super) docstring: Option<String>,
    pub(super) throws: Option<Type>,
    pub(super) takes_self_by_arc: bool,
    pub(super) checksum_fn_name: String,
    // Force a checksum value, or we'll fallback to the trait.
    #[checksum_ignore]
    pub(super) checksum: Option<u16>,
}

impl Method {
    pub fn name(&self) -> &str {
        &self.name
    }

    pub fn is_async(&self) -> bool {
        self.is_async
    }

    pub fn arguments(&self) -> Vec<&Argument> {
        self.arguments.iter().collect()
    }

    // Methods have a special implicit first argument for the object instance,
    // hence `arguments` and `full_arguments` are different.
    pub fn full_arguments(&self) -> Vec<Argument> {
        vec![Argument {
            name: "ptr".to_string(),
            // TODO: ideally we'd get this via `ci.resolve_type_expression` so that it
            // is contained in the proper `TypeUniverse`, but this works for now.
            type_: Type::Object {
                name: self.object_name.clone(),
                module_path: self.object_module_path.clone(),
                imp: self.object_impl,
            },
            by_ref: !self.takes_self_by_arc,
            optional: false,
            default: None,
        }]
        .into_iter()
        .chain(self.arguments.iter().cloned())
        .collect()
    }

    pub fn return_type(&self) -> Option<&Type> {
        self.return_type.as_ref()
    }

    pub fn ffi_func(&self) -> &FfiFunction {
        &self.ffi_func
    }

    pub fn checksum_fn_name(&self) -> &str {
        &self.checksum_fn_name
    }

    pub fn checksum(&self) -> u16 {
        self.checksum.unwrap_or_else(|| uniffi_meta::checksum(self))
    }

    pub fn throws(&self) -> bool {
        self.throws.is_some()
    }

    pub fn throws_name(&self) -> Option<&str> {
        super::throws_name(&self.throws)
    }

    pub fn throws_type(&self) -> Option<&Type> {
        self.throws.as_ref()
    }

    pub fn docstring(&self) -> Option<&str> {
        self.docstring.as_deref()
    }

    pub fn takes_self_by_arc(&self) -> bool {
        self.takes_self_by_arc
    }

    pub fn derive_ffi_func(&mut self) -> Result<()> {
        assert!(!self.ffi_func.name().is_empty());
        self.ffi_func.init(
            self.return_type.as_ref().map(Into::into),
            self.full_arguments().iter().map(Into::into),
        );
        Ok(())
    }

    pub fn iter_types(&self) -> TypeIterator<'_> {
        Box::new(
            self.arguments
                .iter()
                .flat_map(Argument::iter_types)
                .chain(self.return_type.iter().flat_map(Type::iter_types)),
        )
    }

    /// For async callback interface methods, the FFI struct to pass to the completion function.
    pub fn foreign_future_ffi_result_struct(&self) -> FfiStruct {
        callbacks::foreign_future_ffi_result_struct(self.return_type.as_ref().map(FfiType::from))
    }
}

impl From<uniffi_meta::MethodMetadata> for Method {
    fn from(meta: uniffi_meta::MethodMetadata) -> Self {
        let ffi_name = meta.ffi_symbol_name();
        let checksum_fn_name = meta.checksum_symbol_name();
        let is_async = meta.is_async;
        let return_type = meta.return_type.map(Into::into);
        let arguments = meta.inputs.into_iter().map(Into::into).collect();

        let ffi_func = FfiFunction {
            name: ffi_name,
            is_async,
            ..FfiFunction::default()
        };

        Self {
            name: meta.name,
            object_name: meta.self_name,
            object_module_path: meta.module_path,
            is_async,
            object_impl: ObjectImpl::Struct, // will be filled in later
            arguments,
            return_type,
            ffi_func,
            docstring: meta.docstring.clone(),
            throws: meta.throws.map(Into::into),
            takes_self_by_arc: meta.takes_self_by_arc,
            checksum_fn_name,
            checksum: meta.checksum,
        }
    }
}

impl From<uniffi_meta::TraitMethodMetadata> for Method {
    fn from(meta: uniffi_meta::TraitMethodMetadata) -> Self {
        let ffi_name = meta.ffi_symbol_name();
        let checksum_fn_name = meta.checksum_symbol_name();
        let is_async = meta.is_async;
        let return_type = meta.return_type.map(Into::into);
        let arguments = meta.inputs.into_iter().map(Into::into).collect();
        let ffi_func = FfiFunction {
            name: ffi_name,
            is_async,
            ..FfiFunction::default()
        };
        Self {
            name: meta.name,
            object_name: meta.trait_name,
            object_module_path: meta.module_path,
            is_async,
            arguments,
            return_type,
            docstring: meta.docstring.clone(),
            throws: meta.throws.map(Into::into),
            takes_self_by_arc: meta.takes_self_by_arc,
            checksum_fn_name,
            checksum: meta.checksum,
            ffi_func,
            object_impl: ObjectImpl::Struct,
        }
    }
}

/// The list of traits we support generating helper methods for.
#[derive(Clone, Debug, Checksum)]
pub enum UniffiTrait {
    Debug { fmt: Method },
    Display { fmt: Method },
    Eq { eq: Method, ne: Method },
    Hash { hash: Method },
}

impl UniffiTrait {
    pub fn iter_types(&self) -> TypeIterator<'_> {
        Box::new(
            match self {
                UniffiTrait::Display { fmt: m }
                | UniffiTrait::Debug { fmt: m }
                | UniffiTrait::Hash { hash: m } => vec![m.iter_types()],
                UniffiTrait::Eq { eq, ne } => vec![eq.iter_types(), ne.iter_types()],
            }
            .into_iter()
            .flatten(),
        )
    }

    pub fn derive_ffi_func(&mut self) -> Result<()> {
        match self {
            UniffiTrait::Display { fmt: m }
            | UniffiTrait::Debug { fmt: m }
            | UniffiTrait::Hash { hash: m } => {
                m.derive_ffi_func()?;
            }
            UniffiTrait::Eq { eq, ne } => {
                eq.derive_ffi_func()?;
                ne.derive_ffi_func()?;
            }
        }
        Ok(())
    }
}

impl Callable for Constructor {
    fn arguments(&self) -> Vec<&Argument> {
        self.arguments()
    }

    fn return_type(&self) -> Option<Type> {
        Some(Type::Object {
            name: self.object_name.clone(),
            module_path: self.object_module_path.clone(),
            imp: ObjectImpl::Struct,
        })
    }

    fn throws_type(&self) -> Option<Type> {
        self.throws_type().cloned()
    }

    fn is_async(&self) -> bool {
        self.is_async
    }
}

impl Callable for Method {
    fn arguments(&self) -> Vec<&Argument> {
        self.arguments()
    }

    fn return_type(&self) -> Option<Type> {
        self.return_type().cloned()
    }

    fn throws_type(&self) -> Option<Type> {
        self.throws_type().cloned()
    }

    fn is_async(&self) -> bool {
        self.is_async
    }

    fn takes_self(&self) -> bool {
        true
    }
}

#[cfg(test)]
mod test {
    use super::super::ComponentInterface;
    use super::*;

    #[test]
    fn test_that_all_argument_and_return_types_become_known() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                constructor(string? name, u16 age);
                sequence<u32> code_points_of_name();
            };
        "#;
        let ci = ComponentInterface::from_webidl(UDL, "crate_name").unwrap();
        assert_eq!(ci.object_definitions().len(), 1);
        ci.get_object_definition("Testing").unwrap();

        assert_eq!(ci.iter_types().count(), 6);
        assert!(ci.iter_types().any(|t| t == &Type::UInt16));
        assert!(ci.iter_types().any(|t| t == &Type::UInt32));
        assert!(ci.iter_types().any(|t| t
            == &Type::Sequence {
                inner_type: Box::new(Type::UInt32)
            }));
        assert!(ci.iter_types().any(|t| t == &Type::String));
        assert!(ci.iter_types().any(|t| t
            == &Type::Optional {
                inner_type: Box::new(Type::String)
            }));
        assert!(ci
            .iter_types()
            .any(|t| matches!(t, Type::Object { name, ..} if name == "Testing")));
    }

    #[test]
    fn test_alternate_constructors() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                constructor();
                [Name=new_with_u32]
                constructor(u32 v);
            };
        "#;
        let ci = ComponentInterface::from_webidl(UDL, "crate_name").unwrap();
        assert_eq!(ci.object_definitions().len(), 1);

        let obj = ci.get_object_definition("Testing").unwrap();
        assert!(obj.primary_constructor().is_some());
        assert_eq!(obj.alternate_constructors().len(), 1);
        assert_eq!(obj.methods().len(), 0);

        let cons = obj.primary_constructor().unwrap();
        assert_eq!(cons.name(), "new");
        assert_eq!(cons.arguments.len(), 0);
        assert_eq!(cons.ffi_func.arguments.len(), 0);

        let cons = obj.alternate_constructors()[0];
        assert_eq!(cons.name(), "new_with_u32");
        assert_eq!(cons.arguments.len(), 1);
        assert_eq!(cons.ffi_func.arguments.len(), 1);
    }

    #[test]
    fn test_the_name_new_identifies_the_primary_constructor() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                [Name=newish]
                constructor();
                [Name=new]
                constructor(u32 v);
            };
        "#;
        let ci = ComponentInterface::from_webidl(UDL, "crate_name").unwrap();
        assert_eq!(ci.object_definitions().len(), 1);

        let obj = ci.get_object_definition("Testing").unwrap();
        assert!(obj.primary_constructor().is_some());
        assert_eq!(obj.alternate_constructors().len(), 1);
        assert_eq!(obj.methods().len(), 0);

        let cons = obj.primary_constructor().unwrap();
        assert_eq!(cons.name(), "new");
        assert_eq!(cons.arguments.len(), 1);

        let cons = obj.alternate_constructors()[0];
        assert_eq!(cons.name(), "newish");
        assert_eq!(cons.arguments.len(), 0);
        assert_eq!(cons.ffi_func.arguments.len(), 0);
    }

    #[test]
    fn test_the_name_new_is_reserved_for_constructors() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                constructor();
                void new(u32 v);
            };
        "#;
        let err = ComponentInterface::from_webidl(UDL, "crate_name").unwrap_err();
        assert_eq!(
            err.to_string(),
            "the method name \"new\" is reserved for the default constructor"
        );
    }

    #[test]
    fn test_duplicate_primary_constructors_not_allowed() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                constructor();
                constructor(u32 v);
            };
        "#;
        let err = ComponentInterface::from_webidl(UDL, "crate_name").unwrap_err();
        assert_eq!(err.to_string(), "Duplicate interface member name: \"new\"");

        const UDL2: &str = r#"
            namespace test{};
            interface Testing {
                constructor();
                [Name=new]
                constructor(u32 v);
            };
        "#;
        let err = ComponentInterface::from_webidl(UDL2, "crate_name").unwrap_err();
        assert_eq!(err.to_string(), "Duplicate interface member name: \"new\"");
    }

    #[test]
    fn test_trait_attribute() {
        const UDL: &str = r#"
            namespace test{};
            interface NotATrait {
            };
            [Trait]
            interface ATrait {
            };
        "#;
        let ci = ComponentInterface::from_webidl(UDL, "crate_name").unwrap();
        let obj = ci.get_object_definition("NotATrait").unwrap();
        assert_eq!(obj.imp.rust_name_for(&obj.name), "r#NotATrait");
        let obj = ci.get_object_definition("ATrait").unwrap();
        assert_eq!(obj.imp.rust_name_for(&obj.name), "dyn r#ATrait");
    }

    #[test]
    fn test_trait_constructors_not_allowed() {
        const UDL: &str = r#"
            namespace test{};
            [Trait]
            interface Testing {
                constructor();
            };
        "#;
        let err = ComponentInterface::from_webidl(UDL, "crate_name").unwrap_err();
        assert_eq!(
            err.to_string(),
            "Trait interfaces can not have constructors: \"new\""
        );
    }

    #[test]
    fn test_docstring_object() {
        const UDL: &str = r#"
            namespace test{};
            /// informative docstring
            interface Testing { };
        "#;
        let ci = ComponentInterface::from_webidl(UDL, "crate_name").unwrap();
        assert_eq!(
            ci.get_object_definition("Testing")
                .unwrap()
                .docstring()
                .unwrap(),
            "informative docstring"
        );
    }

    #[test]
    fn test_docstring_constructor() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                /// informative docstring
                constructor();
            };
        "#;
        let ci = ComponentInterface::from_webidl(UDL, "crate_name").unwrap();
        assert_eq!(
            ci.get_object_definition("Testing")
                .unwrap()
                .primary_constructor()
                .unwrap()
                .docstring()
                .unwrap(),
            "informative docstring"
        );
    }

    #[test]
    fn test_docstring_method() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                /// informative docstring
                void testing();
            };
        "#;
        let ci = ComponentInterface::from_webidl(UDL, "crate_name").unwrap();
        assert_eq!(
            ci.get_object_definition("Testing")
                .unwrap()
                .get_method("testing")
                .docstring()
                .unwrap(),
            "informative docstring"
        );
    }
}