logins/encryption.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
// This is the *local* encryption support - it has nothing to do with the
// encryption used by sync.
// For context, what "local encryption" means in this context is:
// * We use regular sqlite, but ensure that sensitive data is encrypted in the DB in the
// `secure_fields` column. The encryption key is managed by the app.
// * The `decrypt_struct` and `encrypt_struct` functions are used to convert between an encrypted
// `secure_fields` string and a decrypted `SecureFields` struct
// * Most API functions return `EncryptedLogin` which has its data encrypted.
//
// This makes life tricky for Sync - sync has its own encryption and its own
// management of sync keys. The entire records are encrypted on the server -
// so the record on the server has the plain-text data (which is then
// encrypted as part of the entire record), so:
// * When transforming a record from the DB into a Sync record, we need to
// *decrypt* the data.
// * When transforming a record from Sync into a DB record, we need to *encrypt*
// the data.
//
// So Sync needs to know the key etc, and that needs to get passed down
// multiple layers, from the app saying "sync now" all the way down to the
// low level sync code.
// To make life a little easier, we do that via a struct.
//
// Consumers of the Login component have 3 options for setting up encryption:
// 1. Implement EncryptorDecryptor directly
// eg `LoginStore::new(MyEncryptorDecryptor)`
// 2. Implement KeyManager and use ManagedEncryptorDecryptor
// eg `LoginStore::new(ManagedEncryptorDecryptor::new(MyKeyManager))`
// 3. Generate a single key and create a StaticKeyManager and use it together with
// ManagedEncryptorDecryptor
// eg `LoginStore::new(ManagedEncryptorDecryptor::new(StaticKeyManager { key: myKey }))`
//
// You can implement EncryptorDecryptor directly to keep full control over the encryption
// algorithm. For example, on the desktop, this could make use of NSS's SecretDecoderRing to
// achieve transparent key management.
//
// If the application wants to keep the current encryption, like Android and iOS, for example, but
// control the key management itself, the KeyManager can be implemented and the encryption can be
// done on the Rust side with the ManagedEncryptorDecryptor.
//
// In tests or some command line tools, it can be practical to use a static key that does not
// change at runtime and is already present when the LoginsStore is initialized. In this case, it
// makes sense to use the provided StaticKeyManager.
use crate::error::*;
use std::sync::Arc;
/// This is the generic EncryptorDecryptor trait, as handed over to the Store during initialization.
/// Consumers can implement either this generic trait and bring in their own crypto, or leverage the
/// ManagedEncryptorDecryptor below, which provides encryption algorithms out of the box.
///
/// Note that EncryptorDecryptor must not call any LoginStore methods. The login store can call out
/// to the EncryptorDecryptor when it's internal mutex is held so calling back in to the LoginStore
/// may deadlock.
pub trait EncryptorDecryptor: Send + Sync {
fn encrypt(&self, cleartext: Vec<u8>) -> ApiResult<Vec<u8>>;
fn decrypt(&self, ciphertext: Vec<u8>) -> ApiResult<Vec<u8>>;
}
impl<T: EncryptorDecryptor> EncryptorDecryptor for Arc<T> {
fn encrypt(&self, clearbytes: Vec<u8>) -> ApiResult<Vec<u8>> {
(**self).encrypt(clearbytes)
}
fn decrypt(&self, cipherbytes: Vec<u8>) -> ApiResult<Vec<u8>> {
(**self).decrypt(cipherbytes)
}
}
/// The ManagedEncryptorDecryptor makes use of the NSS provided cryptographic algorithms. The
/// ManagedEncryptorDecryptor uses a KeyManager for encryption key retrieval.
pub struct ManagedEncryptorDecryptor {
key_manager: Arc<dyn KeyManager>,
}
impl ManagedEncryptorDecryptor {
pub fn new(key_manager: Arc<dyn KeyManager>) -> Self {
Self { key_manager }
}
}
impl EncryptorDecryptor for ManagedEncryptorDecryptor {
fn encrypt(&self, clearbytes: Vec<u8>) -> ApiResult<Vec<u8>> {
let keybytes = self
.key_manager
.get_key()
.map_err(|_| LoginsApiError::MissingKey)?;
let key = std::str::from_utf8(&keybytes).map_err(|_| LoginsApiError::InvalidKey)?;
let encdec = jwcrypto::EncryptorDecryptor::new(key)
.map_err(|_: jwcrypto::EncryptorDecryptorError| LoginsApiError::InvalidKey)?;
let cleartext =
std::str::from_utf8(&clearbytes).map_err(|e| LoginsApiError::EncryptionFailed {
reason: e.to_string(),
})?;
encdec
.encrypt(cleartext, "encrypt SecureLoginFields")
.map_err(
|e: jwcrypto::EncryptorDecryptorError| LoginsApiError::EncryptionFailed {
reason: e.to_string(),
},
)
.map(|text| text.into())
}
fn decrypt(&self, cipherbytes: Vec<u8>) -> ApiResult<Vec<u8>> {
let keybytes = self
.key_manager
.get_key()
.map_err(|_| LoginsApiError::MissingKey)?;
let key = std::str::from_utf8(&keybytes).map_err(|_| LoginsApiError::InvalidKey)?;
let encdec = jwcrypto::EncryptorDecryptor::new(key)
.map_err(|_: jwcrypto::EncryptorDecryptorError| LoginsApiError::InvalidKey)?;
let ciphertext =
std::str::from_utf8(&cipherbytes).map_err(|e| LoginsApiError::DecryptionFailed {
reason: e.to_string(),
})?;
encdec
.decrypt(ciphertext, "decrypt SecureLoginFields")
.map_err(
|e: jwcrypto::EncryptorDecryptorError| LoginsApiError::DecryptionFailed {
reason: e.to_string(),
},
)
.map(|text| text.into())
}
}
/// Consumers can implement the KeyManager in combination with the ManagedEncryptorDecryptor to hand
/// over the encryption key whenever encryption or decryption happens.
pub trait KeyManager: Send + Sync {
fn get_key(&self) -> ApiResult<Vec<u8>>;
}
/// Last but not least we provide a StaticKeyManager, which can be
/// used in cases where there is a single key during runtime, for example in tests.
pub struct StaticKeyManager {
key: String,
}
impl StaticKeyManager {
pub fn new(key: String) -> Self {
Self { key }
}
}
impl KeyManager for StaticKeyManager {
#[handle_error(Error)]
fn get_key(&self) -> ApiResult<Vec<u8>> {
Ok(self.key.as_bytes().into())
}
}
#[handle_error(Error)]
pub fn create_canary(text: &str, key: &str) -> ApiResult<String> {
jwcrypto::EncryptorDecryptor::new(key)?.create_canary(text)
}
pub fn check_canary(canary: &str, text: &str, key: &str) -> ApiResult<bool> {
let encdec = jwcrypto::EncryptorDecryptor::new(key)
.map_err(|_: jwcrypto::EncryptorDecryptorError| LoginsApiError::InvalidKey)?;
Ok(encdec.check_canary(canary, text).unwrap_or(false))
}
#[handle_error(Error)]
pub fn create_key() -> ApiResult<String> {
jwcrypto::EncryptorDecryptor::create_key()
}
#[cfg(test)]
pub mod test_utils {
use super::*;
use serde::{de::DeserializeOwned, Serialize};
lazy_static::lazy_static! {
pub static ref TEST_ENCRYPTION_KEY: String = serde_json::to_string(&jwcrypto::Jwk::new_direct_key(Some("test-key".to_string())).unwrap()).unwrap();
pub static ref TEST_ENCDEC: Arc<ManagedEncryptorDecryptor> = Arc::new(ManagedEncryptorDecryptor::new(Arc::new(StaticKeyManager { key: TEST_ENCRYPTION_KEY.clone() })));
}
pub fn encrypt_struct<T: Serialize>(fields: &T) -> String {
let string = serde_json::to_string(fields).unwrap();
let cipherbytes = TEST_ENCDEC.encrypt(string.as_bytes().into()).unwrap();
std::str::from_utf8(&cipherbytes).unwrap().to_owned()
}
pub fn decrypt_struct<T: DeserializeOwned>(ciphertext: String) -> T {
let jsonbytes = TEST_ENCDEC.decrypt(ciphertext.as_bytes().into()).unwrap();
serde_json::from_str(std::str::from_utf8(&jsonbytes).unwrap()).unwrap()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_static_key_manager() {
let key = create_key().unwrap();
let key_manager = StaticKeyManager { key: key.clone() };
assert_eq!(key.as_bytes(), key_manager.get_key().unwrap());
}
#[test]
fn test_managed_encdec_with_invalid_key() {
let key_manager = Arc::new(StaticKeyManager {
key: "bad_key".to_owned(),
});
let encdec = ManagedEncryptorDecryptor { key_manager };
assert!(matches!(
encdec.encrypt("secret".as_bytes().into()).err().unwrap(),
LoginsApiError::InvalidKey
));
}
#[test]
fn test_managed_encdec_with_missing_key() {
struct MyKeyManager {}
impl KeyManager for MyKeyManager {
fn get_key(&self) -> ApiResult<Vec<u8>> {
Err(LoginsApiError::MissingKey)
}
}
let key_manager = Arc::new(MyKeyManager {});
let encdec = ManagedEncryptorDecryptor { key_manager };
assert!(matches!(
encdec.encrypt("secret".as_bytes().into()).err().unwrap(),
LoginsApiError::MissingKey
));
}
#[test]
fn test_managed_encdec() {
let key = create_key().unwrap();
let key_manager = Arc::new(StaticKeyManager { key });
let encdec = ManagedEncryptorDecryptor { key_manager };
let cleartext = "secret";
let ciphertext = encdec.encrypt(cleartext.as_bytes().into()).unwrap();
assert_eq!(
encdec.decrypt(ciphertext.clone()).unwrap(),
cleartext.as_bytes()
);
let other_encdec = ManagedEncryptorDecryptor {
key_manager: Arc::new(StaticKeyManager {
key: create_key().unwrap(),
}),
};
assert!(matches!(
other_encdec.decrypt(ciphertext).err().unwrap(),
LoginsApiError::DecryptionFailed { reason: _ }
));
}
#[test]
fn test_key_error() {
let storage_err = jwcrypto::EncryptorDecryptor::new("bad-key").err().unwrap();
assert!(matches!(
storage_err,
Error::CryptoError(jwcrypto::EncryptorDecryptorError {
from: jwcrypto::JwCryptoError::InvalidKey,
..
})
));
}
#[test]
fn test_canary_functionality() {
const CANARY_TEXT: &str = "Arbitrary sequence of text";
let key = create_key().unwrap();
let canary = create_canary(CANARY_TEXT, &key).unwrap();
assert!(check_canary(&canary, CANARY_TEXT, &key).unwrap());
let different_key = create_key().unwrap();
assert!(!check_canary(&canary, CANARY_TEXT, &different_key).unwrap());
let bad_key = "bad_key".to_owned();
assert!(matches!(
check_canary(&canary, CANARY_TEXT, &bad_key).err().unwrap(),
LoginsApiError::InvalidKey
));
}
}