rc_crypto/aead/
aes_cbc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// This file contains code that was copied from the ring crate which is under
// the ISC license, reproduced below:

// Copyright 2015-2017 Brian Smith.

// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.

// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use crate::{aead, digest, error::*, hmac};
use base64::{engine::general_purpose::STANDARD, Engine};
use nss::aes;

/// AES-256 in CBC mode with HMAC-SHA256 tags and 128 bit nonces.
/// This is a Sync 1.5 specific encryption scheme, do not use for new
/// applications, there are better options out there nowadays.
/// Important note: The HMAC tag verification is done against the
/// base64 representation of the ciphertext.
/// More details here: https://mozilla-services.readthedocs.io/en/latest/sync/storageformat5.html#record-encryption
pub static LEGACY_SYNC_AES_256_CBC_HMAC_SHA256: aead::Algorithm = aead::Algorithm {
    key_len: 64, // 32 bytes for the AES key, 32 bytes for the HMAC key.
    tag_len: 32,
    nonce_len: 128 / 8,
    open,
    seal,
};

// Warning: This does not run in constant time (which is fine for our usage).
pub(crate) fn open(
    key: &aead::Key,
    nonce: aead::Nonce,
    aad: &aead::Aad<'_>,
    ciphertext_and_tag: &[u8],
) -> Result<Vec<u8>> {
    let ciphertext_len = ciphertext_and_tag
        .len()
        .checked_sub(key.algorithm().tag_len())
        .ok_or(ErrorKind::InternalError)?;
    let (ciphertext, hmac_signature) = ciphertext_and_tag.split_at(ciphertext_len);
    let (aes_key, hmac_key_bytes) = extract_keys(key);
    // 1. Tag (HMAC signature) check.
    let hmac_key = hmac::VerificationKey::new(&digest::SHA256, hmac_key_bytes);
    hmac::verify(
        &hmac_key,
        STANDARD.encode(ciphertext).as_bytes(),
        hmac_signature,
    )?;
    // 2. Decryption.
    aes_cbc(aes_key, nonce, aad, ciphertext, aead::Direction::Opening)
}

pub(crate) fn seal(
    key: &aead::Key,
    nonce: aead::Nonce,
    aad: &aead::Aad<'_>,
    plaintext: &[u8],
) -> Result<Vec<u8>> {
    let (aes_key, hmac_key_bytes) = extract_keys(key);
    // 1. Encryption.
    let mut ciphertext = aes_cbc(aes_key, nonce, aad, plaintext, aead::Direction::Sealing)?;
    // 2. Tag (HMAC signature) generation.
    let hmac_key = hmac::SigningKey::new(&digest::SHA256, hmac_key_bytes);
    let signature = hmac::sign(&hmac_key, STANDARD.encode(&ciphertext).as_bytes())?;
    ciphertext.extend(&signature.0.value);
    Ok(ciphertext)
}

fn extract_keys(key: &aead::Key) -> (&[u8], &[u8]) {
    // Always split at 32 since we only do AES 256 w/ HMAC 256 tag.
    let (aes_key, hmac_key_bytes) = key.key_value.split_at(32);
    (aes_key, hmac_key_bytes)
}

fn aes_cbc(
    aes_key: &[u8],
    nonce: aead::Nonce,
    aad: &aead::Aad<'_>,
    data: &[u8],
    direction: aead::Direction,
) -> Result<Vec<u8>> {
    if !aad.0.is_empty() {
        // CBC mode does not support AAD.
        return Err(ErrorKind::InternalError.into());
    }
    Ok(aes::aes_cbc_crypt(
        aes_key,
        &nonce.0,
        data,
        direction.to_nss_operation(),
    )?)
}

#[cfg(test)]
mod test {
    use super::*;

    // These are the test vectors used by the sync15 crate, but concatenated
    // together rather than split into individual pieces.
    const IV_B64: &str = "GX8L37AAb2FZJMzIoXlX8w==";

    const KEY_B64: &str = "9K/wLdXdw+nrTtXo4ZpECyHFNr4d7aYHqeg3KW9+m6Qwye0R+62At\
                           NzwWVMtAWazz/Ew+YKV2o+Wr9BBcSPHvQ==";

    const CIPHERTEXT_AND_TAG_B64: &str =
        "NMsdnRulLwQsVcwxKW9XwaUe7ouJk5Wn80QhbD80l0HEcZGCynh45qIbeYBik0lgcHbKm\
         lIxTJNwU+OeqipN+/j7MqhjKOGIlvbpiPQQLC6/ffF2vbzL0nzMUuSyvaQzyGGkSYM2xU\
         Ft06aNivoQTvU2GgGmUK6MvadoY38hhW2LCMkoZcNfgCqJ26lO1O0sEO6zHsk3IVz6vsK\
         iJ2Hq6VCo7hu123wNegmujHWQSGyf8JeudZjKzfi0OFRRvvm4QAKyBWf0MgrW1F8SFDnV\
         fkq8amCB7NhdwhgLWbN+21NitNwWYknoEWe1m6hmGZDgDT32uxzWxCV8QqqrpH/ZggViE\
         r9uMgoy4lYaWqP7G5WKvvechc62aqnsNEYhH26A5QgzmlNyvB+KPFvPsYzxDnSCjOoRSL\
         x7GG86wT59QZyx5sGKww3rcCNrwNZaRvek3OO4sOAs+SGCuRTjr6XuvA==";

    const CLEARTEXT_B64: &str =
        "eyJpZCI6IjVxUnNnWFdSSlpYciIsImhpc3RVcmkiOiJmaWxlOi8vL1VzZXJzL2phc29u\
         L0xpYnJhcnkvQXBwbGljYXRpb24lMjBTdXBwb3J0L0ZpcmVmb3gvUHJvZmlsZXMva3Nn\
         ZDd3cGsuTG9jYWxTeW5jU2VydmVyL3dlYXZlL2xvZ3MvIiwidGl0bGUiOiJJbmRleCBv\
         ZiBmaWxlOi8vL1VzZXJzL2phc29uL0xpYnJhcnkvQXBwbGljYXRpb24gU3VwcG9ydC9G\
         aXJlZm94L1Byb2ZpbGVzL2tzZ2Q3d3BrLkxvY2FsU3luY1NlcnZlci93ZWF2ZS9sb2dz\
         LyIsInZpc2l0cyI6W3siZGF0ZSI6MTMxOTE0OTAxMjM3MjQyNSwidHlwZSI6MX1dfQ==";

    #[test]
    fn test_decrypt() {
        let key_bytes = STANDARD.decode(KEY_B64).unwrap();
        let key = aead::Key::new(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes).unwrap();
        let ciphertext_and_tag = STANDARD.decode(CIPHERTEXT_AND_TAG_B64).unwrap();

        let iv = STANDARD.decode(IV_B64).unwrap();
        let nonce =
            aead::Nonce::try_assume_unique_for_key(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &iv)
                .unwrap();
        let cleartext_bytes = open(&key, nonce, &aead::Aad::empty(), &ciphertext_and_tag).unwrap();

        let expected_cleartext_bytes = STANDARD.decode(CLEARTEXT_B64).unwrap();
        assert_eq!(&expected_cleartext_bytes, &cleartext_bytes);
    }

    #[test]
    fn test_encrypt() {
        let key_bytes = STANDARD.decode(KEY_B64).unwrap();
        let key = aead::Key::new(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes).unwrap();
        let cleartext = STANDARD.decode(CLEARTEXT_B64).unwrap();

        let iv = STANDARD.decode(IV_B64).unwrap();
        let nonce =
            aead::Nonce::try_assume_unique_for_key(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &iv)
                .unwrap();
        let ciphertext_bytes = seal(&key, nonce, &aead::Aad::empty(), &cleartext).unwrap();

        let expected_ciphertext_bytes = STANDARD.decode(CIPHERTEXT_AND_TAG_B64).unwrap();
        assert_eq!(&expected_ciphertext_bytes, &ciphertext_bytes);
    }

    #[test]
    fn test_roundtrip() {
        let key_bytes = STANDARD.decode(KEY_B64).unwrap();
        let key = aead::Key::new(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes).unwrap();
        let cleartext = STANDARD.decode(CLEARTEXT_B64).unwrap();

        let iv = STANDARD.decode(IV_B64).unwrap();
        let nonce =
            aead::Nonce::try_assume_unique_for_key(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &iv)
                .unwrap();
        let ciphertext_bytes = seal(&key, nonce, &aead::Aad::empty(), &cleartext).unwrap();
        let nonce =
            aead::Nonce::try_assume_unique_for_key(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &iv)
                .unwrap();
        let roundtriped_cleartext_bytes =
            open(&key, nonce, &aead::Aad::empty(), &ciphertext_bytes).unwrap();
        assert_eq!(roundtriped_cleartext_bytes, cleartext);
    }

    #[test]
    fn test_decrypt_fails_with_wrong_aes_key() {
        let mut key_bytes = STANDARD.decode(KEY_B64).unwrap();
        key_bytes[1] = b'X';

        let key = aead::Key::new(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes).unwrap();
        let ciphertext_and_tag = STANDARD.decode(CIPHERTEXT_AND_TAG_B64).unwrap();
        let iv = STANDARD.decode(IV_B64).unwrap();
        let nonce =
            aead::Nonce::try_assume_unique_for_key(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &iv)
                .unwrap();

        let err = open(&key, nonce, &aead::Aad::empty(), &ciphertext_and_tag).unwrap_err();
        match err.kind() {
            ErrorKind::NSSError(_) | ErrorKind::InternalError => {}
            _ => panic!("unexpected error kind"),
        }
    }

    #[test]
    fn test_decrypt_fails_with_wrong_hmac_key() {
        let mut key_bytes = STANDARD.decode(KEY_B64).unwrap();
        key_bytes[60] = b'X';

        let key = aead::Key::new(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes).unwrap();
        let ciphertext_and_tag = STANDARD.decode(CIPHERTEXT_AND_TAG_B64).unwrap();
        let iv = STANDARD.decode(IV_B64).unwrap();
        let nonce =
            aead::Nonce::try_assume_unique_for_key(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &iv)
                .unwrap();

        let err = open(&key, nonce, &aead::Aad::empty(), &ciphertext_and_tag).unwrap_err();
        match err.kind() {
            ErrorKind::InternalError => {}
            _ => panic!("unexpected error kind"),
        }
    }

    #[test]
    fn test_decrypt_fails_with_modified_ciphertext() {
        let key_bytes = STANDARD.decode(KEY_B64).unwrap();
        let key = aead::Key::new(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes).unwrap();
        let iv = STANDARD.decode(IV_B64).unwrap();
        let nonce =
            aead::Nonce::try_assume_unique_for_key(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &iv)
                .unwrap();

        let mut ciphertext_and_tag = STANDARD.decode(CIPHERTEXT_AND_TAG_B64).unwrap();
        ciphertext_and_tag[4] = b'Z';

        let err = open(&key, nonce, &aead::Aad::empty(), &ciphertext_and_tag).unwrap_err();
        match err.kind() {
            ErrorKind::InternalError => {}
            _ => panic!("unexpected error kind"),
        }
    }

    #[test]
    fn test_decrypt_fails_with_modified_tag() {
        let key_bytes = STANDARD.decode(KEY_B64).unwrap();
        let key = aead::Key::new(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &key_bytes).unwrap();
        let iv = STANDARD.decode(IV_B64).unwrap();
        let nonce =
            aead::Nonce::try_assume_unique_for_key(&LEGACY_SYNC_AES_256_CBC_HMAC_SHA256, &iv)
                .unwrap();

        let mut ciphertext_and_tag = STANDARD.decode(CIPHERTEXT_AND_TAG_B64).unwrap();
        let end = ciphertext_and_tag.len();
        ciphertext_and_tag[end - 4] = b'Z';

        let err = open(&key, nonce, &aead::Aad::empty(), &ciphertext_and_tag).unwrap_err();
        match err.kind() {
            ErrorKind::InternalError => {}
            _ => panic!("unexpected error kind"),
        }
    }
}