rc_crypto/
aead.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// This file contains code that was copied from the ring crate which is under
// the ISC license, reproduced below:

// Copyright 2015-2017 Brian Smith.

// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.

// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

mod aes_cbc;
mod aes_gcm;

use crate::error::*;
pub use aes_cbc::LEGACY_SYNC_AES_256_CBC_HMAC_SHA256;
pub use aes_gcm::{AES_128_GCM, AES_256_GCM};
use nss::aes;

pub fn open(
    key: &OpeningKey,
    nonce: Nonce,
    aad: Aad<'_>,
    ciphertext_and_tag: &[u8],
) -> Result<Vec<u8>> {
    (key.algorithm().open)(&key.key, nonce, &aad, ciphertext_and_tag)
}

pub fn seal(key: &SealingKey, nonce: Nonce, aad: Aad<'_>, plaintext: &[u8]) -> Result<Vec<u8>> {
    (key.algorithm().seal)(&key.key, nonce, &aad, plaintext)
}

/// The additional authenticated data (AAD) for an opening or sealing
/// operation. This data is authenticated but is **not** encrypted.
/// This is a type-safe wrapper around the raw bytes designed to encourage
/// correct use of the API.
#[repr(transparent)]
pub struct Aad<'a>(&'a [u8]);

impl<'a> Aad<'a> {
    /// Construct the `Aad` by borrowing a contiguous sequence of bytes.
    #[inline]
    pub fn from(aad: &'a [u8]) -> Self {
        Aad(aad)
    }
}

impl Aad<'static> {
    /// Construct an empty `Aad`.
    pub fn empty() -> Self {
        Self::from(&[])
    }
}

/// The nonce for an opening or sealing operation.
/// This is a type-safe wrapper around the raw bytes designed to encourage
/// correct use of the API.
pub struct Nonce(Vec<u8>);

impl Nonce {
    #[inline]
    pub fn try_assume_unique_for_key(algorithm: &'static Algorithm, value: &[u8]) -> Result<Self> {
        if value.len() != algorithm.nonce_len() {
            return Err(ErrorKind::InternalError.into());
        }
        Ok(Self(value.to_vec()))
    }
}

pub struct OpeningKey {
    key: Key,
}

impl OpeningKey {
    /// Create a new opening key.
    ///
    /// `key_bytes` must be exactly `algorithm.key_len` bytes long.
    #[inline]
    pub fn new(algorithm: &'static Algorithm, key_bytes: &[u8]) -> Result<Self> {
        Ok(Self {
            key: Key::new(algorithm, key_bytes)?,
        })
    }

    /// The key's AEAD algorithm.
    #[inline]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.key.algorithm()
    }
}

pub struct SealingKey {
    key: Key,
}

impl SealingKey {
    /// Create a new sealing key.
    ///
    /// `key_bytes` must be exactly `algorithm.key_len` bytes long.
    #[inline]
    pub fn new(algorithm: &'static Algorithm, key_bytes: &[u8]) -> Result<Self> {
        Ok(Self {
            key: Key::new(algorithm, key_bytes)?,
        })
    }

    /// The key's AEAD algorithm.
    #[inline]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.key.algorithm()
    }
}

/// `OpeningKey` and `SealingKey` are type-safety wrappers around `Key`.
pub(crate) struct Key {
    key_value: Vec<u8>,
    algorithm: &'static Algorithm,
}

impl Key {
    fn new(algorithm: &'static Algorithm, key_bytes: &[u8]) -> Result<Self> {
        if key_bytes.len() != algorithm.key_len() {
            return Err(ErrorKind::InternalError.into());
        }
        Ok(Key {
            key_value: key_bytes.to_vec(),
            algorithm,
        })
    }

    #[inline]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.algorithm
    }
}

// An AEAD algorithm.
#[allow(clippy::type_complexity)]
pub struct Algorithm {
    tag_len: usize,
    key_len: usize,
    nonce_len: usize,
    open: fn(key: &Key, nonce: Nonce, aad: &Aad<'_>, ciphertext_and_tag: &[u8]) -> Result<Vec<u8>>,
    seal: fn(key: &Key, nonce: Nonce, aad: &Aad<'_>, plaintext: &[u8]) -> Result<Vec<u8>>,
}

impl Algorithm {
    /// The length of the key.
    #[inline]
    pub const fn key_len(&self) -> usize {
        self.key_len
    }

    /// The length of a tag.
    #[inline]
    pub const fn tag_len(&self) -> usize {
        self.tag_len
    }

    /// The length of the nonces.
    #[inline]
    pub const fn nonce_len(&self) -> usize {
        self.nonce_len
    }
}

pub(crate) enum Direction {
    Opening,
    Sealing,
}

impl Direction {
    fn to_nss_operation(&self) -> aes::Operation {
        match self {
            Direction::Opening => aes::Operation::Decrypt,
            Direction::Sealing => aes::Operation::Encrypt,
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    static ALL_ALGORITHMS: &[&Algorithm] = &[
        &LEGACY_SYNC_AES_256_CBC_HMAC_SHA256,
        &AES_128_GCM,
        &AES_256_GCM,
    ];
    static ALL_ALGORITHMS_THAT_SUPPORT_AAD: &[&Algorithm] = &[&AES_128_GCM, &AES_256_GCM];

    #[test]
    fn test_roundtrip() {
        for algorithm in ALL_ALGORITHMS {
            let mut cleartext_bytes = vec![0u8; 127];
            crate::rand::fill(&mut cleartext_bytes).unwrap();

            let mut key_bytes = vec![0u8; algorithm.key_len()];
            crate::rand::fill(&mut key_bytes).unwrap();

            let nonce_bytes = vec![0u8; algorithm.nonce_len()];

            let key = SealingKey::new(algorithm, &key_bytes).unwrap();
            let nonce = Nonce::try_assume_unique_for_key(algorithm, &nonce_bytes).unwrap();
            let ciphertext_bytes = seal(&key, nonce, Aad::empty(), &cleartext_bytes).unwrap();

            let key = OpeningKey::new(algorithm, &key_bytes).unwrap();
            let nonce = Nonce::try_assume_unique_for_key(algorithm, &nonce_bytes).unwrap();
            let roundtriped_cleartext_bytes =
                open(&key, nonce, Aad::empty(), &ciphertext_bytes).unwrap();
            assert_eq!(roundtriped_cleartext_bytes, cleartext_bytes);
        }
    }

    #[test]
    fn test_cant_open_with_mismatched_key() {
        let mut key_bytes_1 = vec![0u8; AES_256_GCM.key_len()];
        crate::rand::fill(&mut key_bytes_1).unwrap();

        let mut key_bytes_2 = vec![0u8; AES_128_GCM.key_len()];
        crate::rand::fill(&mut key_bytes_2).unwrap();

        let nonce_bytes = vec![0u8; AES_256_GCM.nonce_len()];

        let key = SealingKey::new(&AES_256_GCM, &key_bytes_1).unwrap();
        let nonce = Nonce::try_assume_unique_for_key(&AES_256_GCM, &nonce_bytes).unwrap();
        let ciphertext_bytes = seal(&key, nonce, Aad::empty(), &[0u8; 0]).unwrap();

        let key = OpeningKey::new(&AES_128_GCM, &key_bytes_2).unwrap();
        let nonce = Nonce::try_assume_unique_for_key(&AES_128_GCM, &nonce_bytes).unwrap();
        let result = open(&key, nonce, Aad::empty(), &ciphertext_bytes);
        assert!(result.is_err());
    }

    #[test]
    fn test_cant_open_modified_ciphertext() {
        for algorithm in ALL_ALGORITHMS {
            let mut key_bytes = vec![0u8; algorithm.key_len()];
            crate::rand::fill(&mut key_bytes).unwrap();

            let nonce_bytes = vec![0u8; algorithm.nonce_len()];

            let key = SealingKey::new(algorithm, &key_bytes).unwrap();
            let nonce = Nonce::try_assume_unique_for_key(algorithm, &nonce_bytes).unwrap();
            let ciphertext_bytes = seal(&key, nonce, Aad::empty(), &[0u8; 0]).unwrap();

            for i in 0..ciphertext_bytes.len() {
                let mut modified_ciphertext = ciphertext_bytes.clone();
                modified_ciphertext[i] = modified_ciphertext[i].wrapping_add(1);

                let key = OpeningKey::new(algorithm, &key_bytes).unwrap();
                let nonce = Nonce::try_assume_unique_for_key(algorithm, &nonce_bytes).unwrap();
                let result = open(&key, nonce, Aad::empty(), &modified_ciphertext);
                assert!(result.is_err());
            }
        }
    }

    #[test]
    fn test_cant_open_with_incorrect_associated_data() {
        for algorithm in ALL_ALGORITHMS_THAT_SUPPORT_AAD {
            let mut key_bytes = vec![0u8; algorithm.key_len()];
            crate::rand::fill(&mut key_bytes).unwrap();

            let nonce_bytes = vec![0u8; algorithm.nonce_len()];

            let key = SealingKey::new(algorithm, &key_bytes).unwrap();
            let nonce = Nonce::try_assume_unique_for_key(algorithm, &nonce_bytes).unwrap();
            let ciphertext_bytes = seal(&key, nonce, Aad::from(&[1, 2, 3]), &[0u8; 0]).unwrap();

            let key = OpeningKey::new(algorithm, &key_bytes).unwrap();
            let nonce = Nonce::try_assume_unique_for_key(algorithm, &nonce_bytes).unwrap();
            let result = open(&key, nonce, Aad::empty(), &ciphertext_bytes);
            assert!(result.is_err());

            let nonce = Nonce::try_assume_unique_for_key(&AES_256_GCM, &nonce_bytes).unwrap();
            let result = open(&key, nonce, Aad::from(&[2, 3, 4]), &ciphertext_bytes);
            assert!(result.is_err());
        }
    }

    #[test]
    fn test_cant_use_incorrectly_sized_key() {
        for algorithm in ALL_ALGORITHMS {
            let key_bytes = vec![0u8; algorithm.key_len() - 1];
            let result = Key::new(algorithm, &key_bytes);
            assert!(result.is_err());

            let key_bytes = vec![0u8; algorithm.key_len() + 1];
            let result = Key::new(algorithm, &key_bytes);
            assert!(result.is_err());
        }
    }

    #[test]
    fn test_cant_use_incorrectly_sized_nonce() {
        for algorithm in ALL_ALGORITHMS {
            let nonce_bytes = vec![0u8; algorithm.nonce_len() - 1];
            let result = Nonce::try_assume_unique_for_key(algorithm, &nonce_bytes);
            assert!(result.is_err());

            let nonce_bytes = vec![0u8; algorithm.nonce_len() + 1];
            let result = Nonce::try_assume_unique_for_key(algorithm, &nonce_bytes);
            assert!(result.is_err());
        }
    }
}